

The best Early Warning Scores to predict important outcomes among ED patients

William Spencer¹, Jesse Smith¹, Patrick Date¹, Erik de Tonnerre¹, David Taylor^{1,2}

University of Melbourne Emergency Department, Austin Hospital

Early Warning Scores (EWS):

- identify patients at risk of adverse outcomes e.g. TRISS injury severity score
- many based mainly on physiological data
 e.g. qSOFA for sepsis
 Worthing Physiological Score
- the best general purpose EWS are unknown

Goodacre Score 2006

(scores 0-14)

Variable	0	+1	+2	+3	+4	+5	+6
GCS	>13	11-13	8-10	5-7	<5		
HR	>89	86-89	-	75-85	<75		
Age	<45	-	45-54	55-64	-	65-74	>74

VitalPac Early Warning Score (ViEWS)

(scores 0-21)

Variable	+3	+2	+1	0	+1	+2	+3
RR	≤8		9-11	12-20		21-24	≥25
SaO_2	≤91%	92%-93%	94%-95%	≥96%			
Suppl O_2	Yes	-	-	No			
Temp °C	≤35.0	-	35.1-36.0	36.1-38	38.1-39	≥39.1	-
SBP	≤90	91-100	101-110	111-249	≥250	-	-
HR		≤ 40	41-50	51-90	91-110	111-130	≥131
AVPU				A			V, P, U

Objective:

- directly compare 13 EWS in a single patient cohort
- determine which best predicts important outcomes:
 - admission to hospital
 - admission to ICU within 2 days
 - clinical deterioration within 2 days (MET/Code Blue)
 - mortality within 2 days
- 'app' development for flagging patients at risk

- prospective cohort study
- Austin Hospital ED
 - metropolitan, tertiary referral centre
 - annual (mixed) patient census ~90,000
- February-May 2018
- approved by the Austin Ethics Committee

Inclusion Criteria:

- uses mainly physiological data
- generates a numerical score
- designed to predict a clinical outcome(s), including death
- had been used in the ED or similar setting e.g. AAU

Exclusion Criteria:

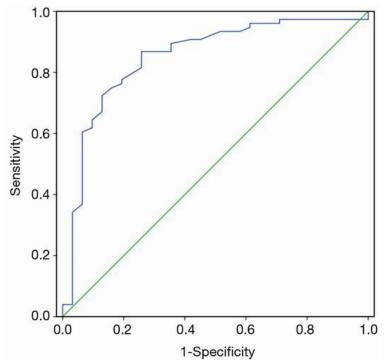
- used for a specific clinical presentation e.g. sepsis
- used for patient subpopulations e.g. psychiatric
- requires use of pathology test data
- requires use of history or examination findings
- requires data not routinely collected e.g. urine output

Early Warning Scores examined

	EWS	Population of derivation	Outcomes predicted
	WPS	ED Patients	Mortality
	VSS	ED Patients	Mortality
	MEWS GCS	ED Patients	Mortality, Admission, Disposition
	REMS	ED Patients	Mortality, Length of Stay
	VSG	ED Patients	Mortality, Admission, MET Calls
	Goodacre	ED Ambulance Patients	Mortality
	GAP	ED Trauma Patients	Mortality
	RAP	Crit. Care Pre-Hospital Patients	Mortality
	MEWS	Medical Admission Patients	Mortality, ICU or HDU, Cardiac Arrest
	Groarke	Medical Admission Patients	Mortality, ICU, Cardiac Arrest, LOS
	ViEWS	Medical Admission Patients	Mortality (24-hour)
	AbViEWS	Medical Admission Patients	Mortality (48-hour)
N	NEWS	Medical Admission Patients	Mortality (24-hour), ICU, Cardiac Arrest
Aust A	Austin Hea	alth	

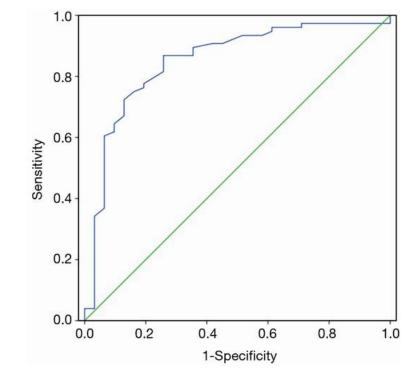
- single data collector
- convenience sampling (08:00-18:00, weekdays)
- consecutive adult patients in the ED cubicles
- 13 EWS scores calculated
- outcomes extracted from the record after 28 days:
 - admission to hospital
 - admission to ICU within 2 days
 - clinical deterioration within 2 days (MET call/Code Blue)
 - mortality within 2 days

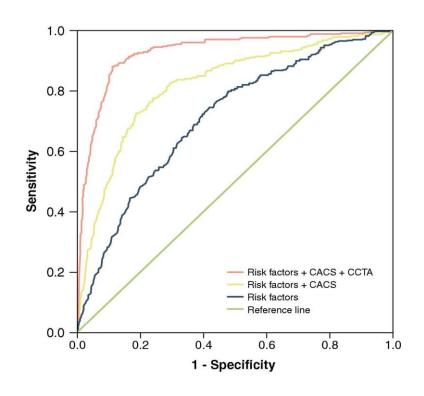
Data Analysis:


Area under the Receiver Operator Characteristic curve (AUROC)

- evaluate sensitivity & specificity at each score level
- area reflects the overall predictive ability of the score

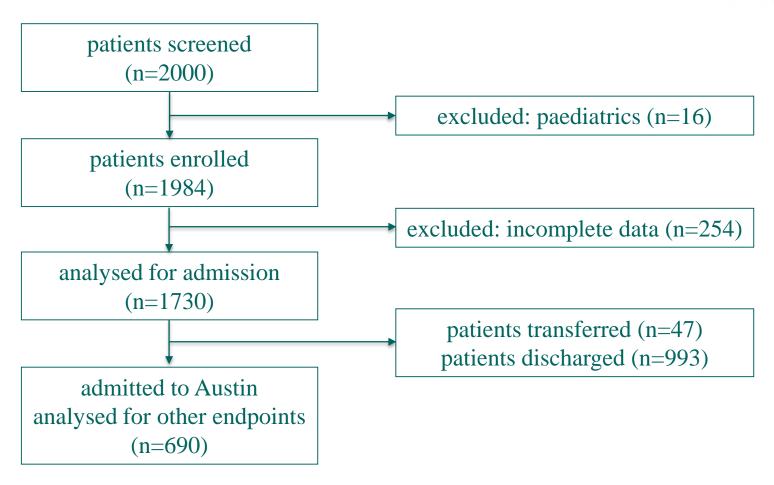
Data Analysis:


Area under the Receiver Operator Characteristic curve (AUROC)



Data Analysis:

Area under the Receiver Operator Characteristic curve (AUROC)


Classification of predictive AUROC accuracy:

- 0.90-1.00 = excellent
- 0.80-0.90 = good
- 0.70-0.80 = fair
- 0.60-0.70 = poor
- 0.50-0.60 = fail

Results

Recruitment Flow Diagram

Results: Admission to hospital

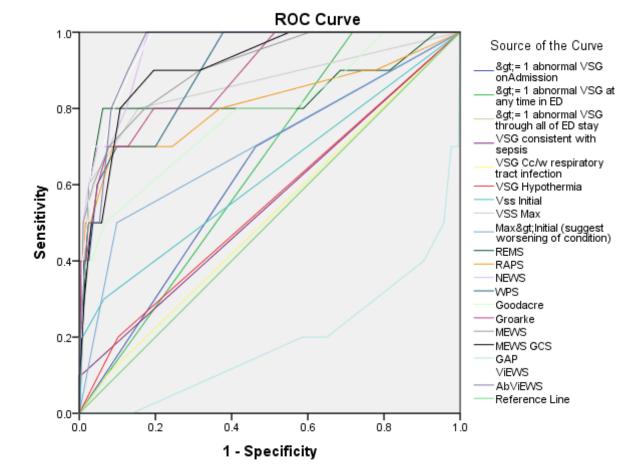
EWS	AUROC	(95% CI)
MEWS GCS	0.68	(0.66-0.71)
Groarke	0.68	(0.65-0.70)
ViEWS	0.68	(0.65-0.70)
AbViEWS	0.68	(0.65-0.70)
WPS	0.68	(0.65-0.70)
NEWS	0.68	(0.65-0.70)
REMS	0.65	(0.63-0.68)
MEWS	0.65	(0.62 - 0.68)
Goodacre	0.65	(0.62 - 0.67)
GAP	0.65	(0.62067)
all others (range)	0.62-0.5	1

Results: Admission to ICU within 2 days

EWS	AUROC	(95% CI)
WPS	0.72	(0.62-0.81)
Groarke	0.70	(0.58-0.82)
MEWS GCS	0.69	(0.57 - 0.81)
AbViEWS	0.69	(0.56-0.83)
MEWS	0.69	(0.56-0.82)
NEWS	0.69	(0.55-0.82)
ViEWS	0.69	(0.55-0.82)
VSS_{MAX}	0.66	(0.53-0.79)
RAPS	0.63	(0.51-0.76)
$VSS_{INITIAL}$	0.62	(0.49 - 0.75)
all others (range)	0.60-0.5	1

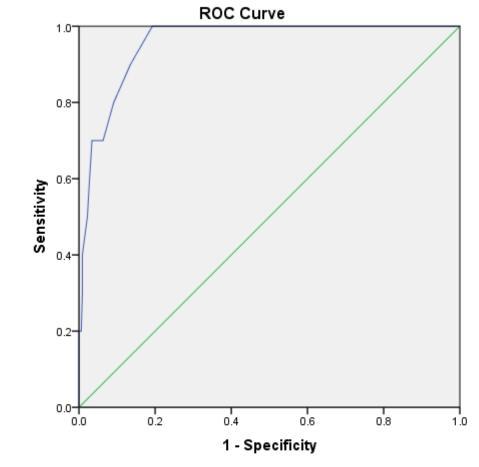
Results: Deterioration within 2 days

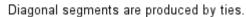
EWS	AUROC	(95% CI)
MEWS GCS	0.70	(0.61-0.79)
MEWS	0.69	(0.60-0.79)
Groarke	0.69	(0.59 - 0.78)
WPS	0.66	(0.56-0.75)
NEWS	0.65	(0.54-0.76)
ViEWS	0.65	(0.54-0.75)
AbViEWS	0.64	(0.53-0.75)
RAPS	0.62	(0.52 - 0.72)
VSS_{MAX}	0.62	(0.51-0.72)
REMS	0.61	(0.51-0.71)
all others (range)	0.60-0.5	4


Results: Mortality within 2 days

EWS	AUROC	(95% CI)
ViEWS	0.96	(0.92 - 0.99)
NEWS	0.95	(0.91 - 0.99)
AbViEWS	0.95	(0.92 - 0.98)
MEWS GCS	0.91	(0.83-0.99)
MEWS	0.91	(0.82-1.00)
WPS	0.90	(0.82 - 0.98)
Groarke	0.89	(0.79 - 0.99)
VSS_{MAX}	0.86	(0.71-1.00)
REMS	0.83	(0.65-1.00)
GAP	0.81	(0.66-0.97)
all other (range)	0.81-0.6	2

Results


Mortality within 2 days: all EWS



Results

Mortality within 2 days: ViEWS

- The usefulness of EWS is limited for:
 - Admission to hospital
 - Admission to ICU within 2 days
 - Clinical deterioration within 2 days
- Some EWS are highly predictive of mortality at 2 days
- Scores automatically calculated from electronic data
- Patients at risk of death flagged
- Inform optimal care and may change management

Components of the best 3 EWS:

EWS RR SaO₂ Suppl O₂ Temp SBP HR AVPU

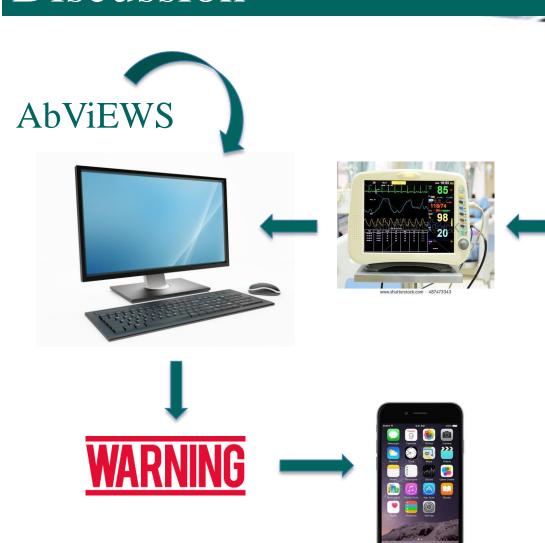
ViEWS

NEWS

AbViEWS

Components of the best 3 EWS:

EWS	RR	SaO_2	Suppl O ₂	Temp	SBP	HR	AVPU
ViEWS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
NEWS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
AbViEWS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-



Summary

AbViEWS has the potential to:

- Analyse routinely collected vital sign data
- Flag patients at risk of death
- Inform patient care:

Summary

AbViEWS has the potential to:

- Analyse routinely collected vital sign data
- Flag patients at risk of death
- Inform patient care:
 - Prognosis
 - Communication with patient and family
 - Advanced Care Planning
 - Communication with fellow clinicians
 - Level of care and disposition e.g. ward vs high dependency vs ICU
 - Management change e.g. drug selection, invasive Rx

