

Delayed presentations to emergency departments in children with head injury: A PREDICT study

Meredith Borland

Thanks to all the staff at the sites

Mild to moderate blunt head injuries in children

- Common reason for presentation to EDs worldwide
- Decision-making dilemma need to CT scan vs against the risks of ionising radiation
- Majority of children present to hospital <24 hours after injury
- Subset present >24 hours
 - Concern is delayed or missed diagnosis of complicated skull fractures or intracranial injury

Background – Delayed presentations

- In adults
- delayed presentations have lower rates of intracranial injury
- account for 15% of cranial CTs undertaken
- Paediatric CDRs not derived for presentations >24hrs
- Studies in children <2 years old
 - intracranial haemorrhage occur at a similar rate to <24 hours
 - additional work-up for non-accidental injury may still be required

Australasian Paediatric Head Injury Study

Prospective observational study compare and externally validate 3 CDRs

- PECARN
- CHALICE
- CATCH

Accuracy of PECARN, CATCH, and CHALICE head injury decision rules in children: a prospective cohort study

Franz E Babl, Meredith L Borland, Natalie Phillips, Amit Kochar, Sarah Dalton, Mary McCaskill, John A Cheek, Yuri Gilhotra, Jeremy Furyk, Jocelyn Neutze, Mark D Lyttle, Silvia Bressan, Susan Donath, Charlotte Molesworth, Kim Jachno, Brenton Ward, Amanda Williams, Amy Baylis, Louise Crowe, Ed Oakley, Stuart R Dalziel, for the Paediatric Research in Emergency Departments International Collaborative (PREDICT)

www.thelancet.com Published online April 11, 2017

Aim of this study

Planned secondary analysis

Primary aim

 Determine the prevalence of clinically important traumatic brain injury (ciTBI) in children presenting with delayed presentations > 24 hours

Secondary aim

- To determine PECARN and CHALICE CDR predictor variables that increase the risk of ciTBI or TBI-CT
- To assist clinicians identify patients likely to require cranial CT scan or observation in hospital.

Methods

Inclusion criteria

<18 yrs, presenting to ED > 24hours post injury, GCS 14 -15

History / characteristics of episodes

Mechanism of injury

- falls (<1, 1-1.5, 1.5-3 and >3 m)
- road traffic incident
- high-speed injury from projectile/object

CDR variables

- vomiting, any LOC, headache, amnesia, seizure, NAI concern, altered mental state, depressed skull fracture, abnormal neurological examination, non-frontal scalp hematoma
- Bivariate logistic regression to assess independent associations in delayed presentation and other variables for ciTBI and TBI-CT

Definitions

TBI-on-CT

- Intracranial haem/contusion
- Cerebral oedema
- Diffuse axonal injury
- Shearing injury
- Sigmoid thrombosis
- Signs of brain herniation
- Midline shift
- Diastasis of skull
- Pneumocephalus
- Depressed skull fracture

ciTBI

- Death
- Intubation > 24h
- Neurosurgery
- Hospital admission \geq 2 nights

Results

Results

981 (5.0%) presented >24 hours

- 386 (39.4%) female
- 277 (28.3%) being <2 years

Mechanism

- 465 (**48.5%**) from falls <1 m
 - compared with 9,333 (**50.8%**) ≤24 hours
- 37 (**3.8%**) from road traffic incident
 - compared with 1038 (5.5%) ≤24 hours

CT Rate

213 (21.7%) had head CT scan >24 hrs

– compared with 1606 (8.6%) ≤24 hours

Relationship to Clinical Decision Rule Variables

	After 24h		Within 24h	
	(n=981)		(n=18784)	
CDR Variables	n	%	n	%
Assault (NAI concern)	14	1.4	81	0.4
Any vomiting	290	30.0	3034	16.3
Headache	310	31.6	3735	19.9
Non-frontal scalp hematoma	204	20.8	3402	18.1
Any LOC at time of injury	107	11.4	2419	13.5
Any Amnesia	62	6.3	1544	8.2

No significant difference in symptoms/signs

Altered Consciousness Seizure

Traumatic Brain Injuries

TBI-on-CT

37 (3.8%) - OR 3.1 Depressed skull fracture 8 (0.8%, 0.4-1.67 95% CI) Intracranial haemorrhage/contusions 31 (3.2%, 2.2-4.5 95% CI)

ciTBI

Hospitalised > 2 nights

8 (0.8%, 0.4-1.6, 95% CI, OR 1.0 (0.5-2.0, 95% CI)

Neurosurgical Intervention

2 (0.2%, 0.0-0.5 95% CI)

No deaths

Bivariate Analysis

TBI-on-CT

30 with non-frontal scalp hematoma (OR 19.0) All 8 with suspicion of depressed skull fracture No cases of children with amnesia positive

ciTBI

Suspicion of depressed fracture (OR 19.6) Non-frontal scalp hematoma (OR 11.7) Presence LOC or amnesia not associated

Discussion

- 5% of children have delayed presentation after HI
- Higher CT rate (21.7% vs 8.6%)
- Low-impact falls
- Symptoms/signs
 - Non-frontal scalp hematoma
 - Headache
 - Any vomiting
 - Assault with NAI concerns
- Risk of TBI-on-CT is increased
- Features associated with TBI-on-CT and ciTBI
 - Suspicion of depressed skull fracture
 - Non-frontal scalp hematoma

Conclusion

- Current head injury CDR parameters are not validated for head injured children with delayed presentations
- Clinicians should evaluate and manage delayed presentations outside of CDRs
- In particularly look for variables which increase risk of TBI
 - suspicion of depressed skull #
 - non frontal haematoma

