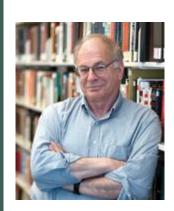
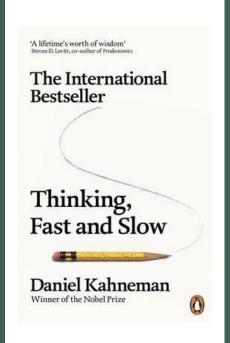
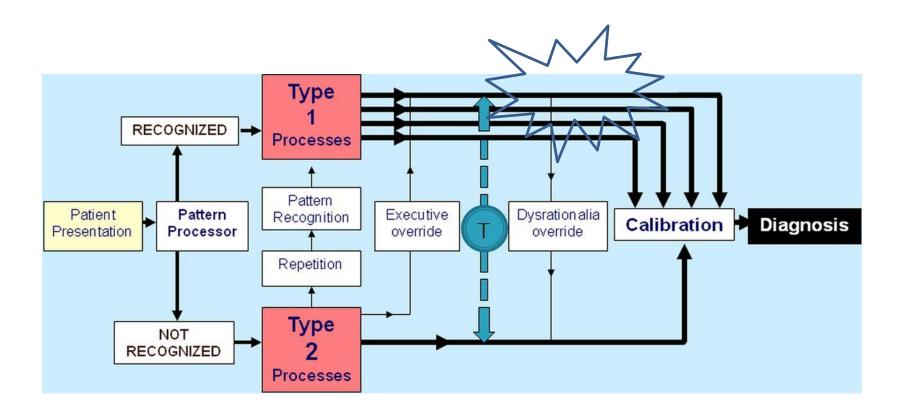
Cognitive bias

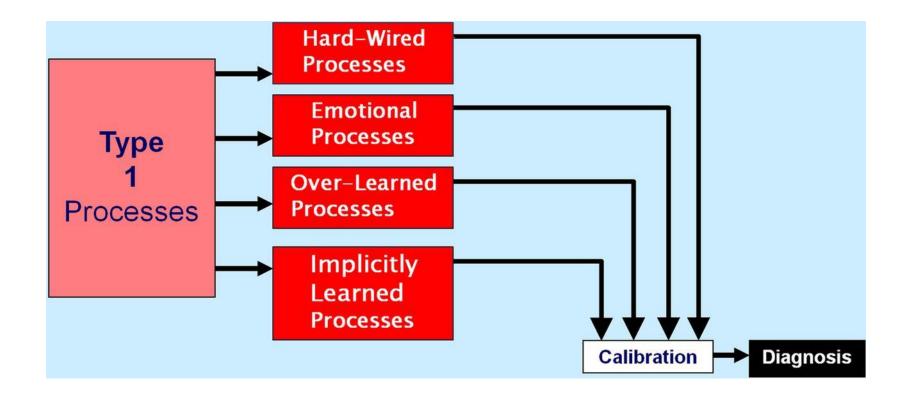

Prof George Braitberg AM Royal Melbourne Hospital University of Melbourne


Cognitive determinants of decision-making

2 systems of thinking


- System 1: intuitive, fast, easy
 - Based on personal 'mindlines', heuristics, beliefs, judgments, preferences
 - Accurate for many decisions, but vulnerable to various cognitive biases (or systematic error driven by psychological factors)
- System 2: analytic, slow, takes effort
 - Based on science, rational

Data from a variety of environments demonstrates that human beings prefer to use System 1 processing whenever possible – physicians up to 95%


Dual process model for decision making.

Pat Croskerry et al. BMJ Qual Saf 2013;22:ii58-ii64

Origins of biases in Type I processes.

Pat Croskerry et al. BMJ Qual Saf 2013;22:ii58-ii64

Long waits to be seen

Fatigue

Phone calls

Uncertainty

Full bladder

Home stress

New trainees

Multi-tasking

Hunger Violence

Ambiguity

Short-staffed

Technology won't work

Angry patients

Noise

Many sick patients

Work area design
Dim lighting

Faulty communication

Teaching obligations

Multi-tasking

Shift work

Constant interruptions

Need to hurry

Lack of resources

Faulty or missing processes

Availability of

consultants

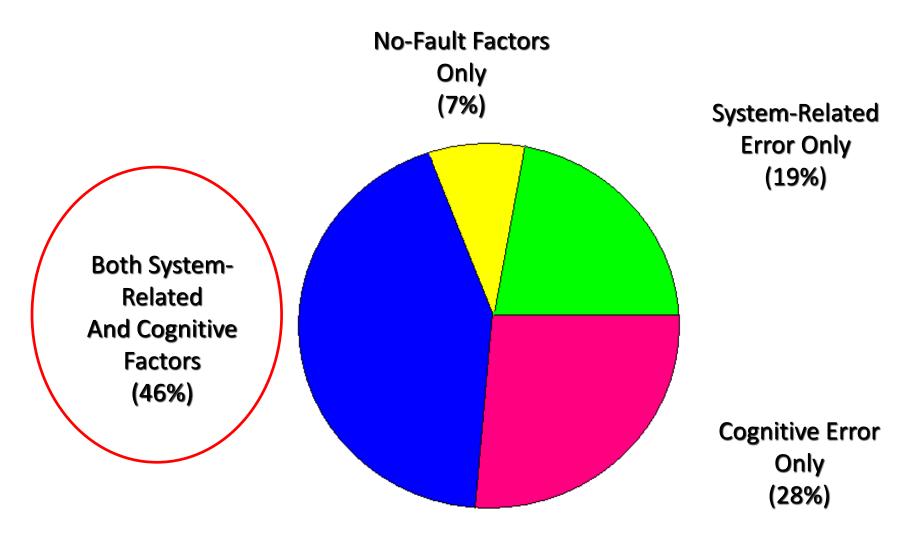
Cognitive Error

A failure in rational/logical thought

Often due to biases or 'dispositions to respond'

About 30+ known biases exist

They are universal



They are predictable

They can be corrected (cognitive de-biasing)

Causes of diagnostic error

Garber et al 2004. Diagnostic error in 100 patients

30 Cognitive Errors

Aggregate bias	Gender bias	Psych-Out Errors		
Anchoring	Hindsight bias	Representativeness		
Ascertainment bias	Multiple alternatives	Search satisficing		
Availability	Omission bias	Sutton's Slip		
Base rate neglect	Order effects	Triage-Cueing		
Commission bias	Outcome bias	Unpacking principle		
Confirmation bias	Overconfidence	Vertical line failure		
Diagnostic creep	Playing the odds	Visceral bias		
Attribution error	Posterior prob.	Ying-Yang Out		
Gambler's Fallacy	Premature closure	Zebra retreat		

Bias Definition

Anchoring/ premature closure	Narrow focus on single feature in presentation to support a diagnostic hypothesis, despite other features refuting this hypothesis – accepting a diagnosis before it is fully verified
Availability bias	Tendency to think diagnoses that come immediately to mind are more likely or more common
Framing effects	Disproportionately influenced by how a problem is described, by whom, the setting, what has been previously accepted as a diagnosis (diagnostic momentum)
Base rate neglect/ Representativeness bias	Tendency to significantly overestimate likelihood of a diagnosis because the problem has some features representative of that diagnosis
Affective bias	Effects of emotional influences on thinking, including feelings towards their patients, both positive and negative
Overconfidence	Tendency to think one knows more than one does, especially if placing faith in opinions without gathering necessary supporting evidence
Blind obedience	Inappropriate deference to recommendations of authority (superiors, 'experts') in absence of sound rationale

Croskerry. Acad Med 2003; Odgie et al. Acad Med 2012; Graber et al. Arch Intern Med 2005

Prematurely settling on a single diagnosis based on a few important features of the initial presentation and failing to adjust as new information become available.

Anchoring

Diagnosis momentum:

Once a diagnostic label has been assigned to a patient by another individual, it is very difficult to remove that label and interpret their symptoms with fresh eyes.

Confirmation bias

Confirmation bias is the tendency to search for, interpret, favour, and recall information in a way that affirms one's prior beliefs or hypotheses.

Once you have formed an opinion, you have a tendency to only notice the evidence that supports you and ignore contrary evidence.

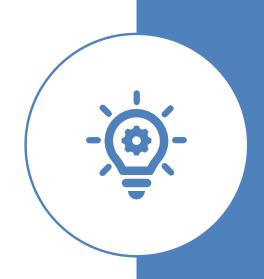
It is a type of systematic error of inductive reasoning.

Common things occur commonly

Availability bias

Experience based bias. The likelihood of a disease is supported when relevant examples come to mind

The diagnosis that hasn't been seen in a long time is less likely to be made.


Framing

- Your decisions are influenced by the context in which the patient is seen and the source of the information.
- You are more likely to miss a AAA
 in a patient you are seeing in the
 ambulatory zone than if you
 were to see the exact same
 patient in a resuscitation room

Affective Bias

This is the tendency to convince yourself that what you want to be true is true, instead of less appealing alternatives.

Cases

Summary

25 year old male presenting with suicidal ideation

16:32; 17/4/2019 Hospital presentation

21:01 17/4/2019
Patient feeling
increasingly anxious.
diazepam 5 mg;
olanzapine 10 mg

22:51; 17/4/2019 Code blue

05:30; 18/4/2019 ICU admission

16:13; 19/4/2019 Time of death

Referred to the coroner for review as "violent or unnatural death"

POCT VBG result

Blood gas values pH $ ho CO_z$ $ ho O_z$ SBE $_C$	68.9	mmHg mmHg mmol/L	[[[- - -]]]
Oximetry values					
ctHb	84	g/L	[-]
? sO₂		%	[-]
FO₂Hb	2.5	%	[-]
FCOHb	2.6	%	[-]
FHHb	8.0	9/	[-]
FMetHb	86.9	%	[-]
Electrolyte values					
cK+	4.2	mmol/L	[-]
cNa⁺	152	mmol/L	[-]
cCa²⁺	1.00	mmol/L	[-]

A Venous
Blood gas
sample was
collected
during the
emergency
code at 22:37
on 17/04

From review of **CCTV** footage on 18/4/19

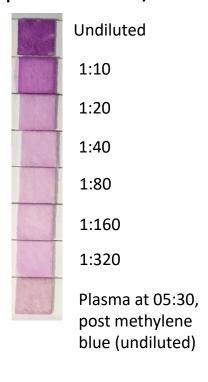
22:03

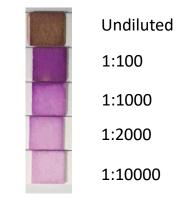
Patient observed pouring contents of a capsule into a cup and drinking contents

22:26

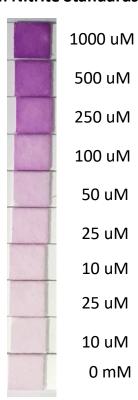
Noisy breathing heard and staff attend to find the patient with:

- Agonal breathing
- Central cyanosis


Patient pacing around room


22:15

Further Investigations


Plasma sample taken 22:40 17/04

Gastric Contents

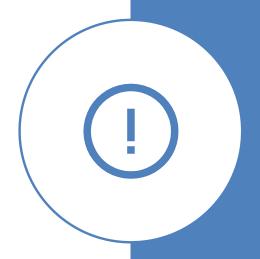
Sodium Nitrite Standards

Bias

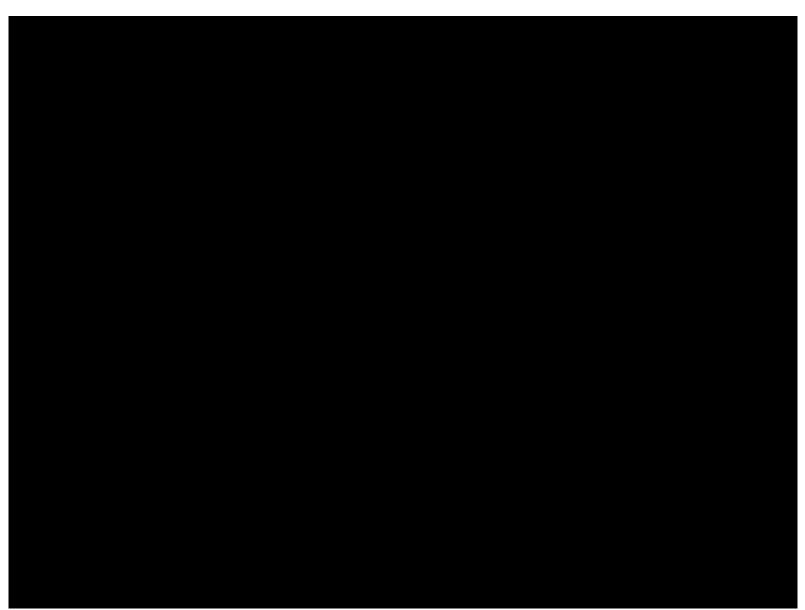
Anchoring

 The EP was looking at the issue as a cardiac arrest and did not look at all the information available

Confirmation


 Once the EP has formed an opinion, there is a tendency to only notice the evidence that supports that opinion and ignore contrary evidence

Framing


 The EP was influenced by the context in which the patient is seen – there was no prior indication of an overdose of this type

Availability

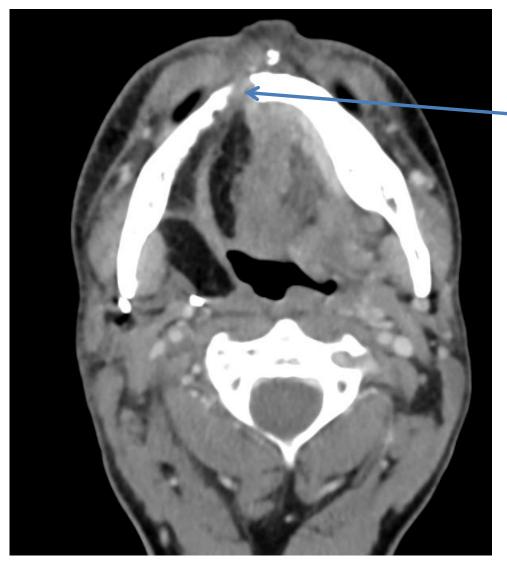
- Common things occur commonly and experience of the past influences present diagnosis and patterns of behaviour
 - The way VBG are reviewed
 - Past experience influences our diagnostic processes.
 - Most EPs will not see a fatal case of MetHb in their professional life

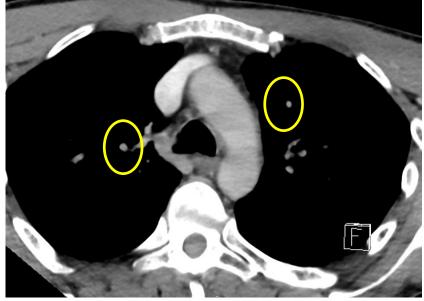
Framing

Case 2

A CT scan was performed to plan the surgical approach of a patient with non union of the mandible following a major operation for excision of head and neck cancer

This was not a routine cancer surveillance scan


When his surgeon reviewed the neck CT scan the day after it was done, The surgeon's primary focus was on the mandible


The surgeon failed to "see" the large apical lung metastasis visible within the scan

The formal radiology report was not available in the system until after this review appointment

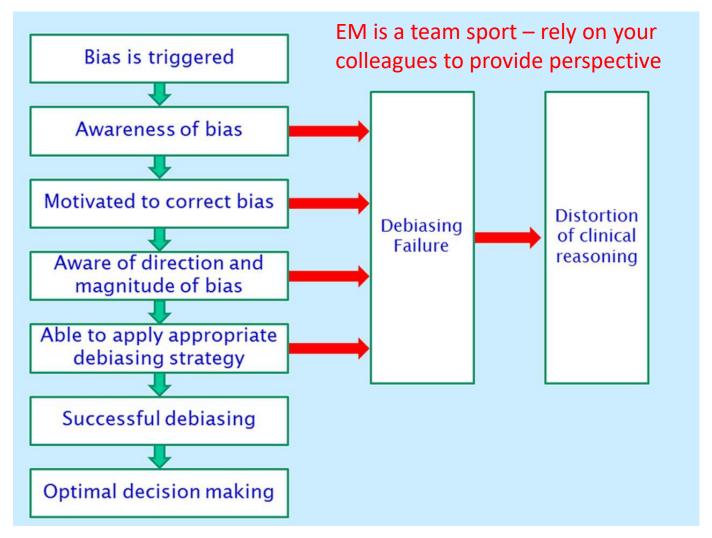
The patient underwent hospitalisation and a mandibular plate, discharged uneventfully

6 months later he presented with seizures to another hospital with lung and brain metastasis



Bias

Anchoring


 The surgeon was looking at the issue he was needing to address surgically, rather than the whole scan

Framing

 The surgeon was influenced by the context in which the patient was being reviewed

Successive steps in cognitive debiasing (adapted from Wilson and Brekke).35 Green arrows=yes; Red arrows=no.

Pat Croskerry et al. BMJ Qual Saf 2013;22:ii58-ii64

Conclusion

- Need for a better understanding of cognitive biases and be content to challenge yourself
- Rely on your colleagues to dig you out of a "cognitive ditch"
- Debiasing strategies have strong face validity
- More research within the field of behavioural economics and human factors is needed
- Know yourself and challenge pattern recognition or system 1 approaches