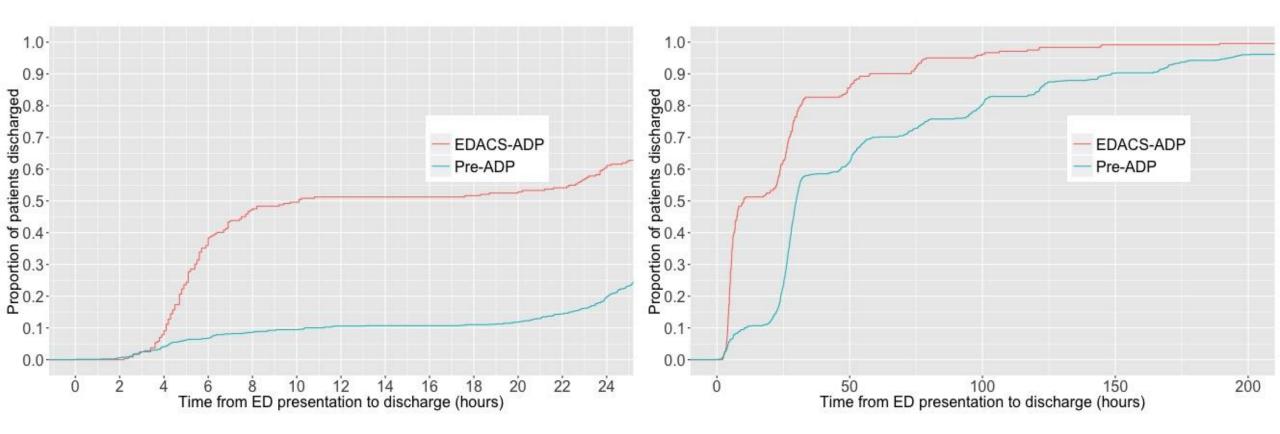
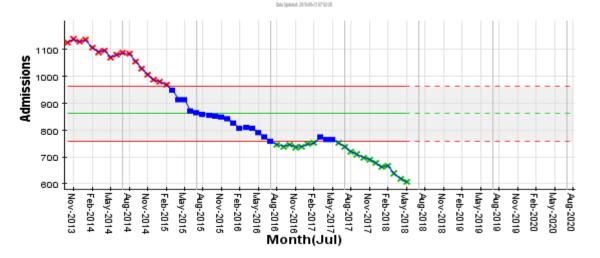
### INVESTIGATION OF POSSIBLE ACS IN THE ED

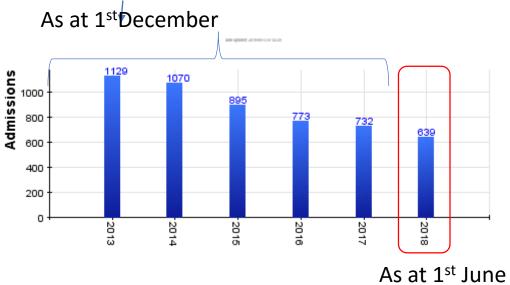
Martin P Than


### DISCLOSURES

Have received grants and/or speakers fees from: Abbott, Abbott Point of Care, Alere, Beckman and Roche

Have had research discussions with ET, Radiometer, Siemens


Also:


Health Research Council (NZ), Heart Foundation, Christchurch Heart Institute and many, many stakeholder partners

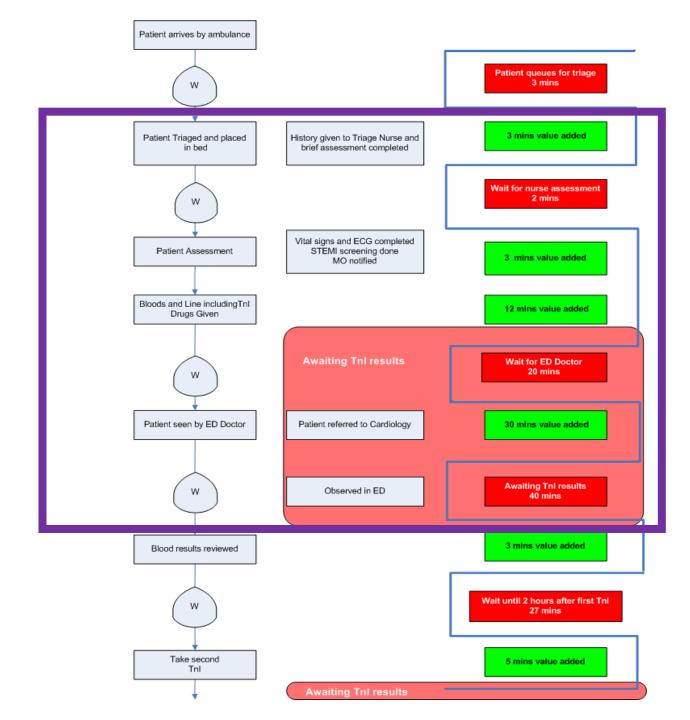


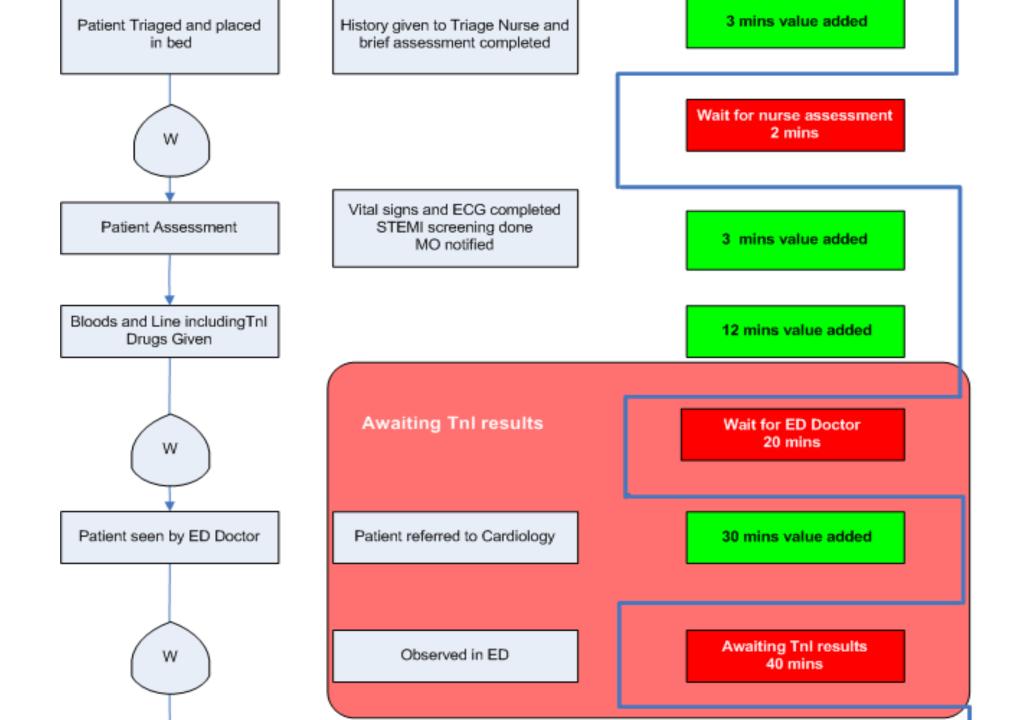
ED Chest Pain ICD Primary Diag. R00-R09 Symptoms and signs involving the circulatory and respiratory systems Cardiology admitted

Accumulative of the last 12 months as at 1<sup>st</sup> of month






## SUMMARY


- Impact of working up patients for AMI on crowding and flow
- Troponin metrics and characteristics
- Historical use of x2 troponin measurements
- High precision assays make rule-out possible with single 'baseline' test
- Evidence is very strong with central lab. assays
- Evidence now emerging with new point-of-care (POC) assays

If there was faster turnaround of troponin results.....would it help?

• Value stream mapping

# Value stream mapping





## All troponin assays are different

• They use varying antibodies for signal creation

# Understand yours

• Additionally, point-of care assay do **<u>NOT</u>** meet accuracy of lab assays

| Company/Platform/<br>Assay                                                   | LoB<br>(µg/L) | LoD<br>(µg/L) | % CV at<br>99 <sup>th</sup><br>Percentile | Conc at<br>20% CV<br>(µg/L) | Conc at<br>10% CV<br>(µg/L)  | Reference<br>Population N,<br>Ages, Sex         | Specimen Type                                                   | 99 <sup>th</sup> Percentile<br>(µg/L) | Percent<br>Normals<br>Measured<br>≥ LoD | Statistic Used<br>to Calc 99 <sup>th</sup><br>Percentile | Epitopes<br>Recognized by<br>Antibodies | Country of Package<br>Insert: Version Date                                             |
|------------------------------------------------------------------------------|---------------|---------------|-------------------------------------------|-----------------------------|------------------------------|-------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|-----------------------------------------|----------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------|
| Abbott i-STAT                                                                | 0.02          | NP            | 16.5%                                     | 0.07                        | 0.1                          | Overall<br>n = 162                              | Sodium and lithium<br>heparinized whole blood<br>and plasma     | Overall: 0.08                         | NP                                      | NP                                                       | NP                                      | US: Rev. Date: 01-Jul-13                                                               |
| LSI Medience<br>(formerly Mitsubishi)<br>PATHFAST cTnI;<br>commercial        | NP            | 1             | < 6%                                      | 2                           | 3.1                          | Overall<br>n =474<br>18-86y<br>F: 236<br>M: 238 | Overall: 15.48<br>M: 16.91<br>F: 11.46                          | Whole blood,<br>plasma                | Overall:<br>76.3%                       | Non-Parametric                                           | C: 41-49,<br>D: 71-116,<br>163-209      | WW except US & Japan:<br>Ver.6,2017.10                                                 |
| LSI Medience<br>(former Mitsubishi)<br>PATHFAST hs-cTnl<br>/PATHFAST cTnl-II | 1.23          | 2.33          | 6.1                                       | 4                           | 15                           | Overall<br>n=734<br>Age >18<br>F: 352<br>M: 382 | Overall: 27.9<br>F: 20.3<br>M: 29.7                             | Whole blood,<br>Plasma                | Total:<br>66.3%<br>F: 52.8%<br>M: 78.8% | Non-Parametric                                           | C:41-49,<br>D: 71-116, 163-<br>209      | hs-cTnl : WW except US<br>& Japan<br>Ver.1, May 2018<br>cTnl-II: US, ver.4 Mar<br>2015 |
| Philips Electronics<br>Nederland BV<br>/Minicare I-20/<br>Minicare cTnl      | 0.0085        | 0.018         | 18.6%                                     | 0.038                       | NP                           | Overall<br>n =750<br>18-86y<br>F: 377<br>M: 373 | Li-heparin<br>whole blood, capillary<br>whole blood and plasma  | Overall: 0.043                        | Overall:<br>5.1% for<br>capillary       | Non-Parametric                                           | C: 41-49<br>D: 20-100<br>anti cTnC MAb  | IFU cTnI EN<br>Issue #5122300<br>12922*2017-03<br>Document version 3.0                 |
| Quidel/Alere Triage<br>Cardiac Panel                                         | NP            | 0.050         | NP                                        | 16.3% at<br>0.120           | NP                           | Overall<br>n = 323<br>F: 168<br>M: 155          | EDTA whole blood or plasma                                      | NP                                    | NP                                      | NP                                                       | NP                                      | USA, 2014, rev. D                                                                      |
| Quidel/Alere Triage<br>SOB                                                   | NP            | 0.050         | NP                                        | 16.3% at<br>0.120           | NP                           | Overall<br>n = 323<br>F: 168<br>M: 155          | EDTA whole blood or plasma                                      | NP                                    | NP                                      | NP                                                       | NP                                      | USA, 2014, rev. D                                                                      |
| Quidel/Alere Triage<br>Cardio                                                | 0.002         | 0.01          | NP                                        | 0.020                       | 0.040                        | Overall<br>n = 989                              | EDTA whole blood or<br>plasma                                   | Overall: 0.020                        | Overall:<br>11.8%                       | Non-Parametric                                           | NP                                      | USA, 2014, rev. D                                                                      |
| Radiometer AQT90<br>FLEX TnI                                                 | NP            | 0.009         | 12.3%                                     | NP                          | 0.027                        | Overall<br>n = 231<br>F: 106<br>M: 128          | EDTA and heparinized whole blood and plasma                     | Overall: 0.023                        | NP                                      | Non-Parametric                                           | C: 41-49,<br>190-196<br>D:137-149       | 990-872<br>InterNPtioNPI<br>201608X                                                    |
| Radiometer AQT90<br>FLEX TnT                                                 | NP            | 0.008         | 15.2%                                     | NP                          | 0.026                        | Overall<br>n = 260<br>F: 132<br>M: 128          | EDTA and heparinized whole blood and plasma                     | Overall: 0.017                        | NP                                      | Non-Parametric                                           | C:125-131<br>D:136-147                  | 990-872<br>InterNPtioNPI<br>201608H                                                    |
| Response<br>Biomedical<br>RAMP Troponin I                                    | NP            | 0.03          | 20.0%                                     | 0.10                        | 0.21                         | Overall<br>n =180                               | Only EDTA whole blood                                           | Overall: <0.10                        | NP                                      | NP                                                       | NP                                      | Eu IFU 90012-1.2                                                                       |
| Roche CARDIAC<br>POC Troponin T –<br>Roche cobas h 232                       | NP            | 0.04          | NP                                        | 0.04 - 2.0                  | 9.3%<br>between<br>0.04 –0.2 | Overall<br>n = 302                              | Heparinized whole blood                                         | NP                                    | NP                                      | NP                                                       | D: 125-131<br>C: 136-147                | EU, 2016-05                                                                            |
| Siemens<br>Stratus CS<br>Acute Care cTnl test<br>pack                        | <0.03         | NP            | 8.2%                                      | 0.03                        | 0.06                         | Overall<br>n=101<br>No age<br>No sex            | Whole blood (Li or NP<br>heparin) or<br>plasma Li or Na heparin | Overall: 0.07                         | NP                                      | NP                                                       | C: 27-32<br>D: 41-56                    | CE, 2008-04                                                                            |

#### Point of Care Cardiac Troponin I and T Assay Analytical Characteristics Designated by Manufacturer

IFCC Committee on Clinical Applications of Cardiac Bio-Markers (C-CB) v072618

LoB, limit of blank; LoD, limit of detection, NP, not provided; C, capture antibody; D, detection antibody; M, male, F, female; Conc, concentration; WW worldwide. All data have been listed as provided by the manufacturer, except assays in blue were abstracted from package insert due to lack of correspondence from manufacturer.

## How to find details about your assay

- IFCC troponin table
- IFCC = International Federation of Clinical Chemistry
- <u>http://www.ifcc.org/ifcc-education-division/emd-committees/task-force-on-clinical-applications-of-cardiac-bio-markers-tf-cb/</u>

### Analytical characteristics of commercial and research cardiac troponin I and T assays declared by the manufacturer

| Commercially available assays -          | LoB <sup>a</sup> | LoD <sup>b</sup> | 99 <sup>th</sup> % | %CV                 | 10%    | Reference        | Epitopes recognised by           | Detection Antibody |
|------------------------------------------|------------------|------------------|--------------------|---------------------|--------|------------------|----------------------------------|--------------------|
| Company/ platform(s)/ assay              | (ng/L)           | (ng/L)           | ng/L)              | at 99 <sup>th</sup> | CV     | population       | Antibodies                       | Tag                |
|                                          |                  |                  |                    | %                   | (ng/L) | N: age range (y) |                                  |                    |
| Abbott AxSYM ADV                         | 20               |                  | 40                 | 14.0                | 160    |                  | C 87-91, 41-49; D 24-40          | ALP                |
| Abbott Architect                         | <10              |                  | 28                 | 14.0                | 32     | 449: 18-63       | C 87-91, 24-40; D: 41-49         | Acridinium         |
|                                          |                  |                  |                    |                     |        | (M: 224 18 - 63  |                                  |                    |
|                                          |                  |                  |                    |                     |        | F: 225 18 - 62)  |                                  |                    |
| Abbott Architect STAT hs-cTnI e          | 0.7 - 1.3        | 1.1 - 1.9        |                    | 4.0                 | 4.7    | 1531: 21 - 75    | C: 24-40; D: 41-49               | Acridinium         |
|                                          |                  |                  | M: 34.2            | M: 3.5              |        | (M: 766 21 - 73  |                                  |                    |
|                                          |                  |                  | F: 15.6            | F: 5,3              |        | F: 765 21 - 75)  |                                  |                    |
| Abbott i-STAT                            | 20               |                  | 80                 | 16.5                | 100    |                  | C: 41-49, 88-91; D: 28-39, 62-78 | ALP                |
| Alere Triage SOB                         | 50               |                  | NAD                | NA                  | NA     |                  | C: NA; D: 27-40                  | Fluorophor         |
| Alere Triage Cardio 3                    | 2                | 10               | 22                 | 17.0                | 37     |                  | C: 27-39; D: 83-93, 190-196      | Fluorophor         |
| Beckman Coulter Access Accu              | 10               |                  | 40                 | 14.0                | 60     |                  | C: 41-49; D: 24-40               | ALP                |
| bioMerieux Vidas Ultra                   | <10              | <10              | 10                 | 27.7                | 110    | 747: 20 - 81     | C: 41-49, 22-29; D: 87-91, 7B9   | ALP                |
| Mitsubishi PATHFAST cTnI e               |                  | 1                | 20                 | 5.2                 | 3,1    | 380              | C: 41-49; D: 71-116, 163-209     | ALP                |
| Mitsubishi PATHFAST cTnI-II <sup>1</sup> | 2                | 8                | 29                 | 5.0                 | 14     | 490: 18 - 78     | C: 41-49; D: 71-116, 163-209     | ALP                |
| Ortho VITROS Troponin I ES               | 7                | 12               | 34                 | 10.0                | 34     |                  | C: 24-40, 41-49; D: 87-91        | HRP                |
| Radiometer AQT90 FLEX TnI                |                  | 9.5              | 23                 | 17.7                | 39     |                  | C: 41-49, 190-196; D: 137-149    | Europium           |
| Radiometer AQT90 FLEX TnT                |                  | 8                | 17                 | 15,2                | 26     |                  | C: 125-131; D: 136-147           | Europium           |
| Response Biomedical RAMP                 | 30               |                  | 100                | 20.0                | 210    | 180: 18 - 80     | C: 85-92; D: 26-38               | Fluorophor         |
|                                          |                  |                  |                    |                     |        | (M: 84; F: 96)   | - <i>*</i>                       |                    |
| D t /l D t T. T                          | 20               | 1                | MAD                | NT A                | NTA .  |                  | 71. 105 121. D.122 1.47          | (1-11              |

### **Limit of Detection** (LoD): is the lowest analyte concentration at which reliable detection is feasible (though it may not be able to do this with consistent accuracy).

| Stemens IMMULTTE* 2000 XPt*                           | 200             | 290 | 10,3 | 320 | 300 | C: 8/-91; D: 2/-40 | ALP - Chemiluminescence |
|-------------------------------------------------------|-----------------|-----|------|-----|-----|--------------------|-------------------------|
| Siemens IMMULITE <sup>®</sup> 1000 Turbo <sup>1</sup> | 150             | NA  | NA   | 640 |     | C: 87-91; D: 27-40 | ALP - Chemiluminescence |
| Siemens Stratus® CS cTnI                              | 30 <sup>d</sup> | 70  | 10.0 | 60  | 101 | C: 27-32; D: 41-56 | ALP                     |
| Tosoh ST AIA-PACK                                     | 60              | 60° | 8,5  | NA  |     | C: 41-49; D: 87-91 | ALP                     |

### Analytical characteristics of commercial and research cardiac troponin I and T assays declared by the manufacturer

| Commercially available assays -<br>Company/ platform(s)/ assay | LoB <sup>a</sup><br>(ng/L) | LoD <sup>b</sup><br>(ng/L) | 99 <sup>th</sup> %<br>(ng/L) | %CV<br>at 99 <sup>th</sup> | 10%<br>CV | Reference<br>population | Epitopes recognised by<br>Antibodies | Detection Antibody<br>Tag |
|----------------------------------------------------------------|----------------------------|----------------------------|------------------------------|----------------------------|-----------|-------------------------|--------------------------------------|---------------------------|
| Company/ platform(sy assay                                     | (ng L)                     | (ng/L)                     | (ugr.)                       | at 55<br>%                 | (ng/L)    | N: age range (y)        | Annoules                             | Tag                       |
| Abbott AxSYM ADV                                               | 20                         |                            | 40                           | 14.0                       | 160       |                         | C 87-91, 41-49; D 24-40              | ALP                       |
| Abbott Architect                                               | <10                        |                            | 28                           | 14.0                       | 32        | 449: 18-63              | C 87-91, 24-40; D: 41-49             | Acridinium                |
|                                                                |                            |                            |                              |                            |           | (M: 224 18 - 63         |                                      |                           |
|                                                                |                            |                            |                              |                            |           | F: 225 18 - 62)         |                                      |                           |
| Abbott Architect STAT hs-cTnI e                                | 0.7 - 1.3                  | 1.1 - 1.9                  | 26,2                         | 4.0                        | 4.7       | 1531: 21 - 75           | C: 24-40; D: 41-49                   | Acridinium                |
|                                                                |                            |                            | M: 34.2                      | M: 3,5                     |           | (M: 766 21 - 73         |                                      |                           |
|                                                                |                            |                            | F: 15,6                      | F: 5,3                     |           | F: 765 21 - 75)         |                                      |                           |
| Abbott i-STAT                                                  | 20                         |                            | 80                           | 16,5                       | 100       |                         | C: 41-49, 88-91; D: 28-39, 62-78     | ALP                       |
| Alere Triage SOB                                               | 50                         |                            | NAD                          | NA                         | NA        |                         | C: NA; D: 27-40                      | Fluorophor                |
| Alere Triage Cardio 3                                          | 2                          | 10                         | 22                           | 17.0                       | 37        |                         | C: 27-39; D: 83-93, 190-196          | Fluorophor                |
| Beckman Coulter Access Accu                                    | 10                         |                            | 40                           | 14.0                       | 60        |                         | C: 41-49; D: 24-40                   | ALP                       |
| bioMerieux Vidas Ultra                                         | <10                        | <10                        | 10                           | 27.7                       | 110       | 747: 20 - 81            | C: 41-49, 22-29; D: 87-91, 7B9       | ALP                       |
| Mitsubishi PATHFAST cTnI e                                     |                            | 1                          | 20                           | 5,2                        | 3,1       | 380                     | C: 41-49; D: 71-116, 163-209         | ALP                       |
| Mitsubishi PATHFAST cTnI-II <sup>1</sup>                       | 2                          | 8                          | 29                           | 5.0                        | 14        | 490: 18 - 78            | C: 41-49; D: 71-116, 163-209         | ALP                       |
| Ortho VITROS Troponin I ES                                     | 7                          | 12                         | 34                           | 10.0                       | 34        |                         | C: 24-40, 41-49; D: 87-91            | HRP                       |
| Radiometer AQT90 FLEX TnI                                      |                            | 9,5                        | 23                           | 17.7                       | 39        |                         | C: 41-49, 190-196; D: 137-149        | Europium                  |
| Radiometer AQT90 FLEX TnT                                      |                            | 8                          | 17                           | 15,2                       | 26        |                         | C: 125-131; D: 136-147               | Europium                  |
| Response Biomedical RAMP                                       | 30                         |                            | 100                          | 20,0                       | 210       | 180: 18 - 80            | C: 85-92; D: 26-38                   | Fluorophor                |
| •                                                              |                            |                            |                              |                            |           | (M: 84; F: 96)          | -                                    | -                         |

**The 99th percentile** (mean ± 3 standard deviations) A cut-off below which 99% of the results occurred in a (apparently) healthy reference population.

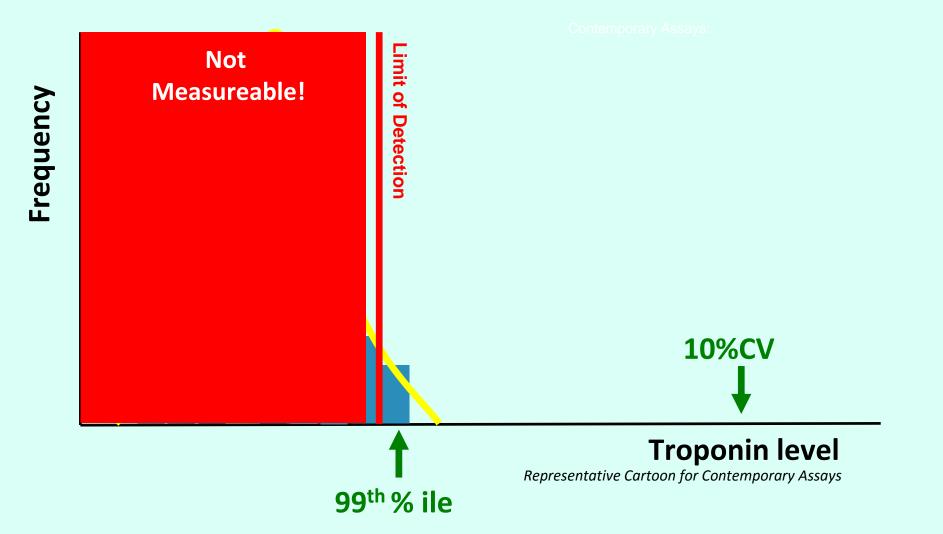
Levels recorded above this are considered to be abnormal.

### Analytical characteristics of commercial and research cardiac troponin I and T assays declared by the manufacturer

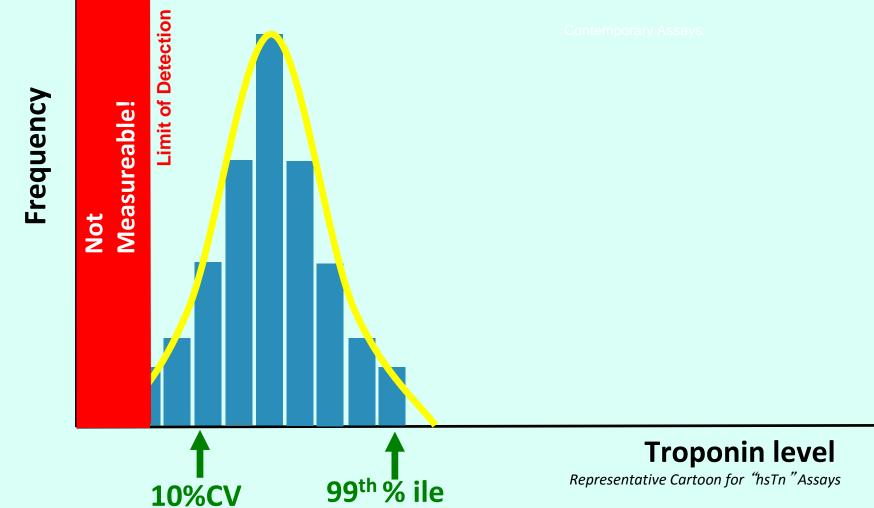
| Commercially available assays -          | LoB *     | LoD <sup>b</sup> | 99 <sup>th</sup> % |            | %CV           | 10%    | Reference         | Epitopes recognised by            | Detection Antibody |
|------------------------------------------|-----------|------------------|--------------------|------------|---------------|--------|-------------------|-----------------------------------|--------------------|
| Company/ platform(s)/ assay              | (ng/L)    | (ng/L)           | (ng/L)             | - <b>(</b> | at 99th       | CV     | population        | Antibodies                        | Tag                |
| Company/ platform(s) assay               | (ing L)   | (ingri)          | (ng L)             | N          | %             | (ng/L) | N: age range (y)  | Anuboues                          | Tag                |
| Abbott AxSYM ADV                         | 20        |                  | 40                 |            | 14.0          | 160    | iv. age range (j) | C 87-91, 41-49; D 24-40           | ALP                |
| Abbott Architect                         | <10       |                  | 28                 | -+         | 14.0          | 32     | 449: 18-63        | C 87-91, 24-40; D: 41-49          | Acridinium         |
| Abbout Architect                         | <10       |                  | 20                 |            | 14.0          | 32     | (M: 224 18 - 63   | C 87-91, 24-40, D. 41-49          | Actionium          |
|                                          |           |                  |                    |            |               |        | F: 225 18 - 62)   |                                   |                    |
| the set of a CTATE math                  | 0.7 - 1.3 | 1.1 - 1.9        | 26.2               |            | 4.0           | 4.7    | 1531: 21 - 75     | C: 24-40; D: 41-49                | Acridinium         |
| Abbott Architect STAT hs-cTnI e          | 0.7 - 1.5 | 1.1 - 1.9        | 20.2<br>M: 34.2    |            | 4.0<br>M: 3.5 | 4.7    | (M: 766 21 - 73   | C: 24-40; D: 41-49                | Acridinium         |
|                                          |           |                  |                    |            |               |        |                   |                                   |                    |
| ALL OF AT                                | 20        |                  | F: 15.6            |            | F: 5.3        | 100    | F: 765 21 - 75)   | (1, 4) 40, 88 01, D, 28 20, 42 78 | 41.0               |
| Abbott i-STAT                            | 20        |                  | 80                 |            | 16,5          | 100    |                   | C: 41-49, 88-91; D: 28-39, 62-78  | ALP                |
| Alere Triage SOB                         | 50        |                  | NAD                |            | NA            | NA     |                   | C: NA; D: 27-40                   | Fluorophor         |
| Alere Triage Cardio 3                    | 2         | 10               | 22                 |            | 17.0          | 37     |                   | C: 27-39; D: 83-93, 190-196       | Fluorophor         |
| Beckman Coulter Access Accu              | 10        |                  | 40                 |            | 14.0          | 60     |                   | C: 41-49; D: 24-40                | ALP                |
| bioMerieux Vidas Ultra                   | <10       | <10              | 10                 |            | 27.7          | 110    | 747: 20 - 81      | C: 41-49, 22-29; D: 87-91, 7B9    | ALP                |
| Mitsubishi PATHFAST cTnI e               |           | 1                | 20                 |            | 5.2           | 3.1    | 380               | C: 41-49; D: 71-116, 163-209      | ALP                |
| Mitsubishi PATHFAST cTnI-II <sup>1</sup> | 2         | 8                | 29                 |            | 5.0           | 14     | 490: 18 - 78      | C: 41-49; D: 71-116, 163-209      | ALP                |
| Ortho VITROS Troponin I ES               | 7         | 12               | 34                 |            | 10.0          | 34     |                   | C: 24-40, 41-49; D: 87-91         | HRP                |
| Radiometer AQT90 FLEX TnI                |           | 9.5              | 23                 |            | 17.7          | 39     |                   | C: 41-49, 190-196; D: 137-149     | Europium           |
| Radiometer AQT90 FLEX TnT                |           | 8                | 17                 |            | 15.2          | 26     |                   | C: 125-131; D: 136-147            | Europium           |
| Response Biomedical RAMP                 | 30        |                  | 100                |            | 20.0          | 210    | 180: 18 - 80      | C: 85-92; D: 26-38                | Fluorophor         |
| -                                        |           |                  |                    |            |               |        | (M: 84: F: 96)    |                                   |                    |

The **coefficient of variation** (CV): a lab statistical term for assay consistency

It describes the reproducibility of a result at a given level if the same sample were to be tested over and over again.


| Commercially available assays -<br>Company/ platform(s)/ assay | LoB <sup>a</sup><br>(ng/L) | LoD <sup>b</sup><br>(ng/L) | 99 <sup>th</sup> %<br>(ng/L) | %CV<br>at 99 <sup>th</sup> | 10%<br>CV | Reference<br>population | Epitopes recognised by<br>Antibodies | Detection Antibody<br>Tag |
|----------------------------------------------------------------|----------------------------|----------------------------|------------------------------|----------------------------|-----------|-------------------------|--------------------------------------|---------------------------|
|                                                                |                            |                            |                              | %                          | (ng/L)    | N: age range (y)        |                                      |                           |
| Abbott AxSYM ADV                                               | 20                         |                            | 40                           | 14.0                       | 160       |                         | C 87-91, 41-49; D 24-40              | ALP                       |
| Abbott Architect                                               | <10                        |                            | 28                           | 14.0                       | 32        | 449: 18-63              | C 87-91, 24-40; D: 41-49             | Acridinium                |
|                                                                |                            |                            |                              |                            |           | (M: 224 18 - 63         |                                      |                           |
|                                                                |                            |                            |                              |                            |           | F: 225 18 - 62)         |                                      |                           |
| Abbott Architect STAT hs-cTnI e                                | 0.7 - 1.3                  | 1.1 - 1.9                  |                              | 4.0                        | 4.7       | 1531: 21 - 75           | C: 24-40; D: 41-49                   | Acridinium                |
|                                                                |                            |                            | M: 34.2                      | M: 3.5                     |           | (M: 766 21 - 73         |                                      |                           |
|                                                                |                            |                            | F: 15.6                      | F: 5,3                     |           | F: 765 21 - 75)         |                                      |                           |
| Abbott i-STAT                                                  | 20                         |                            | 80                           | 16.5                       | 100       |                         | C: 41-49, 88-91; D: 28-39, 62-78     | ALP                       |
| Alere Triage SOB                                               | 50                         |                            | NAD                          | NA                         | NA        |                         | C: NA; D: 27-40                      | Fluorophor                |
| Alere Triage Cardio 3                                          | 2                          | 10                         | 22                           | 17.0                       | 37        |                         | C: 27-39; D: 83-93, 190-196          | Fluorophor                |
| Beckman Coulter Access Accu                                    | 10                         |                            | 40                           | 14.0                       | 60        |                         | C: 41-49; D: 24-40                   | ALP                       |
| bioMerieux Vidas Ultra                                         | <10                        | <10                        | 10                           | 27.7                       | 110       | 747: 20 - 81            | C: 41-49, 22-29; D: 87-91, 7B9       | ALP                       |
| Mitsubishi PATHFAST cTnI <sup>e</sup>                          |                            | 1                          | 20                           | 5.2                        | 3,1       | 380                     | C: 41-49; D: 71-116, 163-209         | ALP                       |
| Mitsubishi PATHFAST cTnI-II <sup>1</sup>                       | 2                          | 8                          | 29                           | 5.0                        | 14        | 490: 18 - 78            | C: 41-49; D: 71-116, 163-209         | ALP                       |
| Ortho VITROS Troponin I ES                                     | 7                          | 12                         | 34                           | 10.0                       | 34        |                         | C: 24-40, 41-49; D: 87-91            | HRP                       |
| Radiometer AQT90 FLEX TnI                                      |                            | 9.5                        | 23                           | 17.7                       | 39        |                         | C: 41-49, 190-196; D: 137-149        | Europium                  |
| Radiometer AQT90 FLEX TnT                                      |                            | 8                          | 17                           | 15.2                       | 26        |                         | C: 125-131; D: 136-147               | Europium                  |
| Response Biomedical RAMP                                       | 30                         |                            | 100                          | 20.0                       | 210       | 180: 18 - 80            | C: 85-92; D: 26-38                   | Fluorophor                |
| •                                                              |                            |                            |                              |                            |           | (M: 84; F: 96)          |                                      | -                         |
| Roche Cardiac Reader cTnT                                      | 30                         |                            | NAD                          | NA                         | NA        |                         | C: 125-131; D:136-147                | Gold particles            |
| Roche cobas h 232 TnT                                          | 50                         |                            | NAD                          | NA                         | NA        |                         | C: 125-131; D:136-147                | Gold particles            |
| Roche E 2010 /cobas e 411 /                                    | 10                         |                            | NAD                          | NA                         | 30        | 533: 20-71              | C: 125-131; D:136-147                | Ruthenium                 |
| E 170/ cobas e 601 / 602 TnT (4 <sup>th</sup> gen)             |                            |                            |                              |                            |           | (M: 268; F: 265)        |                                      |                           |
| Roche E 2010/cobas e 411 /                                     |                            | 5                          | 14                           | 10.0                       | 13        |                         | C: 125-131; D: 136-147               | Ruthenium                 |
| E 170/ cobas e 601 / 602 hs-TnT                                |                            |                            |                              |                            |           |                         |                                      |                           |
| Roche E 2010/cobas e 411 /                                     |                            | 160                        | 160°                         | NA                         | 300       |                         | C: 87-91, 190-196; D: 23-29, 27-43   | Ruthenium                 |
| Roche E 170/cobas e 601 / 602 cTnI                             |                            |                            |                              |                            |           |                         |                                      |                           |
| Siemens ADVIA Centaur <sup>®</sup> TnI-Ultra™                  | 6                          |                            | 40                           | 8.8                        | 30        | 648: 17 - 91            | C: 41-49, 87-91; D: 27-40            | Acridinium                |
| 0:                                                             | 40.4                       |                            | 70                           | 15 00                      | 140       | 240. 10.02              | (1, 07, 20, 15, 41, 57               | ALD                       |

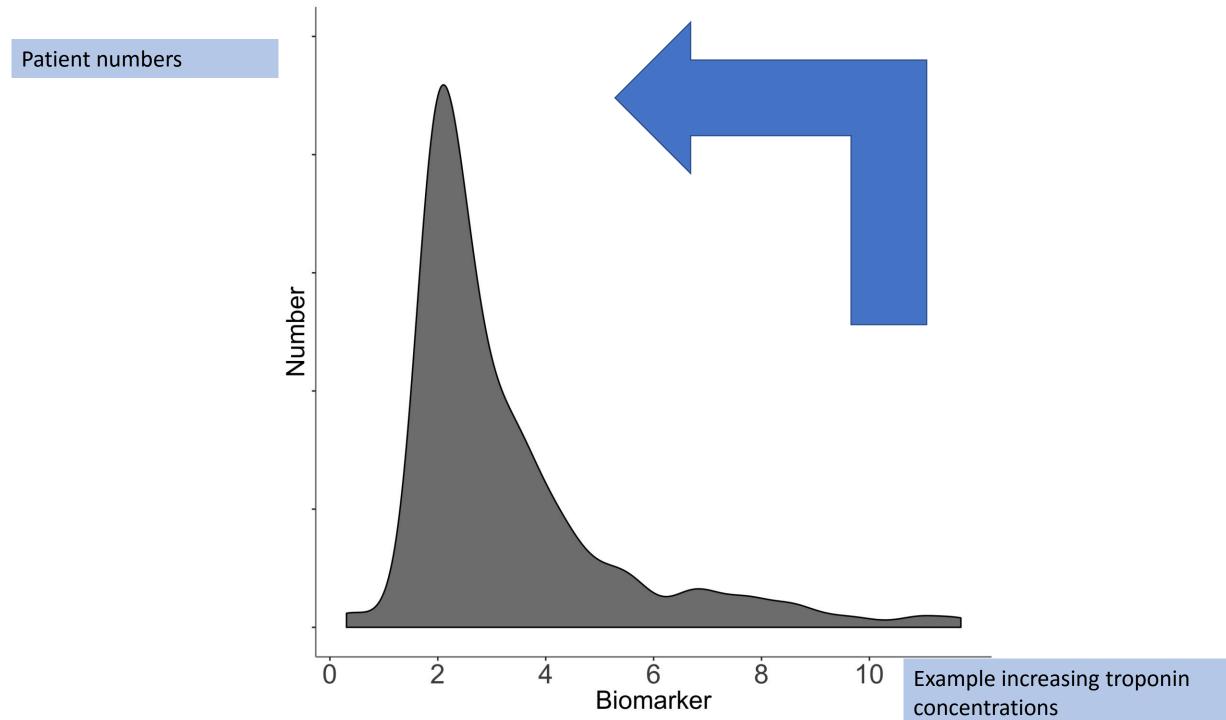
The precision of an assay (represented by the CV) worsens at lower levels of detection.

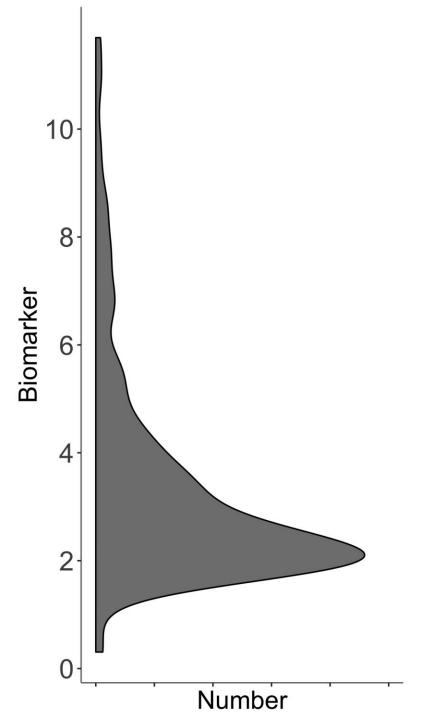

## WHAT DOES THIS MEAN?

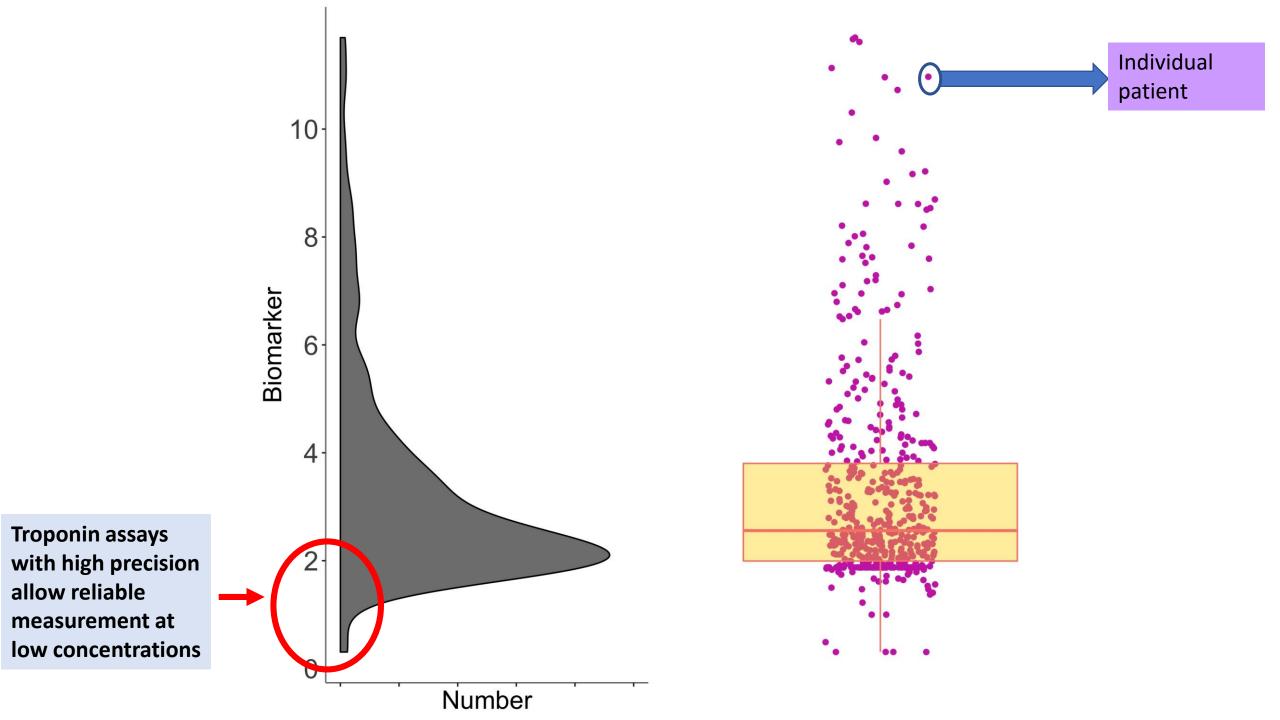
- Variation is low (that's good) at high concentrations
  - But that is not where we make rule-out decisions
- Variation increases (gets worse) at lower concentrations

# What is meant by % Detection above the LoD?

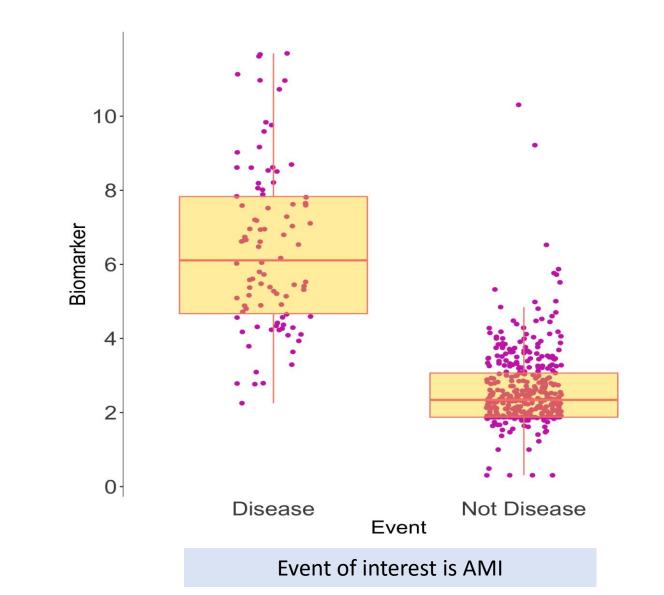



# What is meant by % Detection above the LoD?

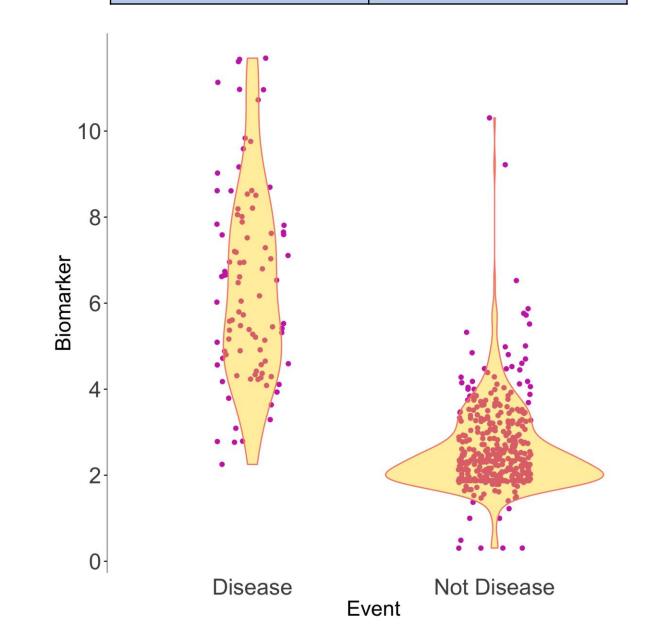




## Diagnostic 2x2 table

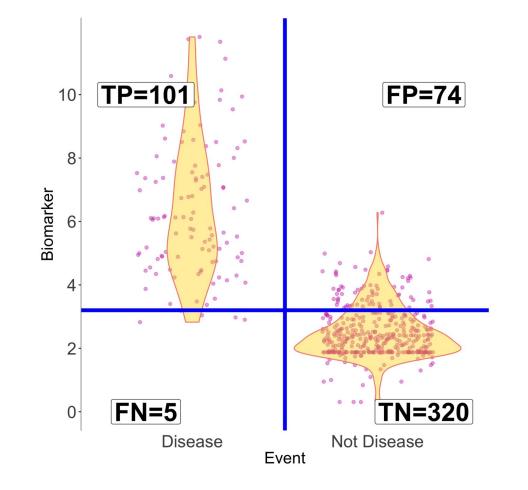
|                        | Reference Standard<br>Positive | Reference Standard<br>Negative |  |  |
|------------------------|--------------------------------|--------------------------------|--|--|
| Clinical Test Positive | True positive result           | False positive result          |  |  |
| Clinical Test Negative | False negative result          | True negative result           |  |  |

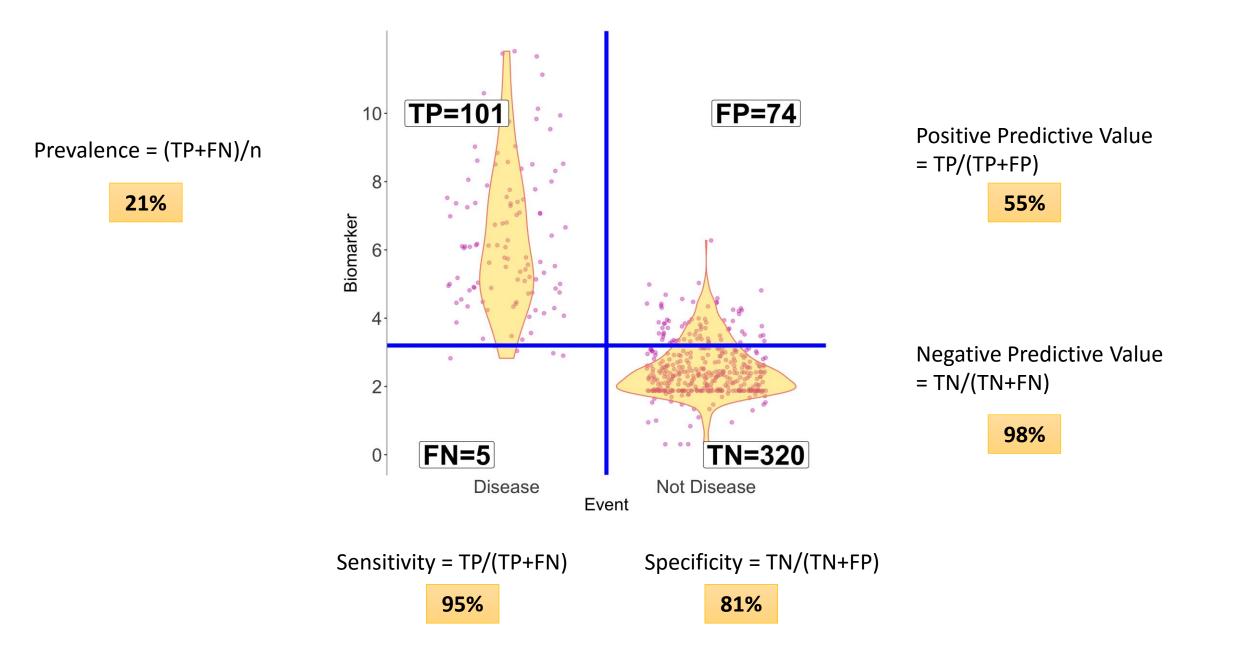

|                      | AMI                 | No AMI              |
|----------------------|---------------------|---------------------|
| TROPONIN<br>POSITIVE | True positive (TP)  | False positive (FP) |
| TROPONIN<br>NEGATIVE | False negative (FN) | True negative (TN)  |

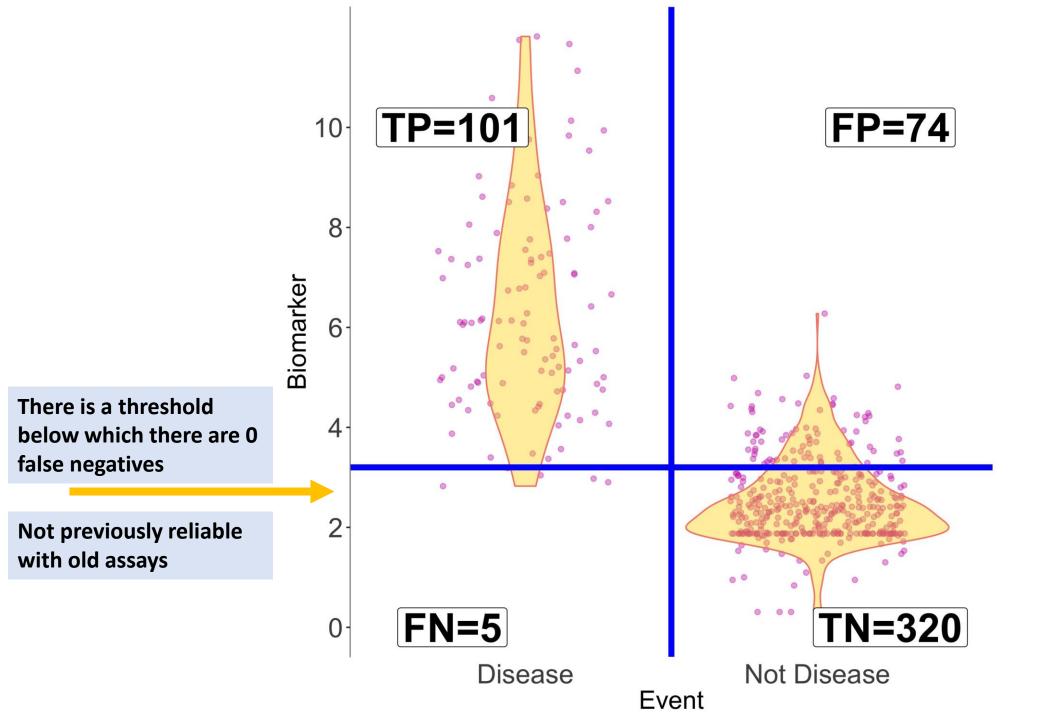


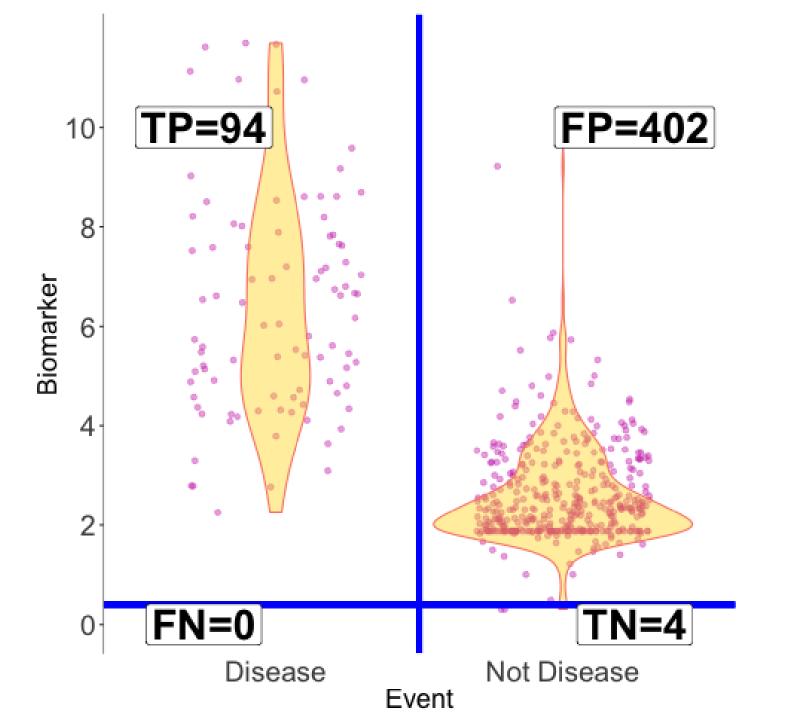






# AMI No AMI





AMI No AMI




|          | AMI            | No AMI         |
|----------|----------------|----------------|
| TROPONIN | True positive  | False positive |
| POSITIVE | (TP)           | (FP)           |
| TROPONIN | False negative | True negative  |
| NEGATIVE | (FN)           | (TN)           |









# High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome

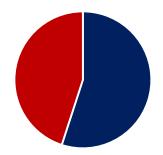
WITH PERMISSION OF: Dr Andrew Chapman BHF Clinical Research Fellow



### Defining a risk stratification threshold at presentation



High-sensitivity cardiac troponin I assay


In 4,739 consecutive patients with suspected ACS<sup>1</sup>

A risk stratification threshold of <5 ng/L at presentation:

NPV 99.6% (95%Cl 99.3 – 99.8)

for myocardial infarction or cardiac death at 30 days

>50% of patients



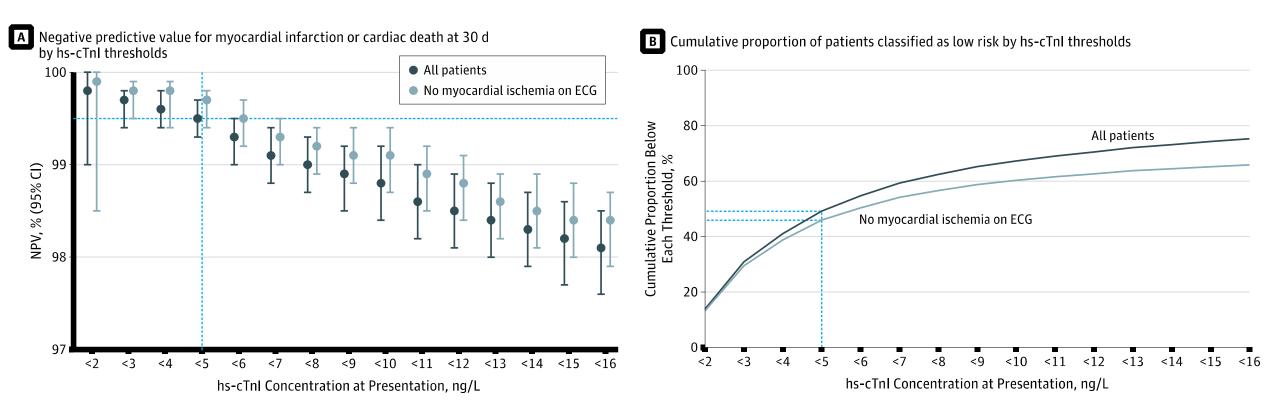
1. Shah AS et al. High-sensitivity cardiac troponin I at presentation in patients with suspected acute coronary syndrome. Lancet. 2015



### What is the optimal threshold to rule out myocardial infarction?



## Systematic review and individual patient-level data meta-analysis




Prospective studies of patients with suspected acute coronary syndrome

High-sensitivity cardiac troponin I measured at presentation 22,457 patients



### Secondary analysis of different thresholds





#### JAMA | Original Investigation

#### Association of High-Sensitivity Cardiac Troponin I Concentration With Cardiac Outcomes in Patients With Suspected Acute Coronary Syndrome

Andrew R. Chapman, MD; Kuan Ken Lee, MD; David A. McAllister, MD; Louise Cullen, PhD; Jaimi H. Greenslade, MD; William Parsonage, DM; Andrew Worster, MD; Peter A. Kavaik, PhD; Stefan Blankenberg, MD; Johannes Neumann, MD; NHS A. Söerensen, MD; Dirk: Westermann, MD; Madelon M. Buijk, MD; Geard J. E. Verdel, MD; JohN W. Pickering, PM; Nol Karti P. Than, MD; Raphad Tweenbold, MD; Patrick Badetscher, MD; Zaid Sabti, MD; Christian Mueller, MD; Ahdan, MD; Philip Adamson, MD; Fiona E. Strachan, PhD; Amy Ferry, BS;; Dennis Sandeman, MS; Alasdair Gray, MD; Richard Body, PhD; Brian Keevil, PhD; Edward Carlton, PhD; Kim Greaves, MD; Frederick K. Korley, MD; Thomas S. Metkus, MD; Yader Sandoval, MD; Fred S. Apple, PhD; David E. Newby, MD; Anoop S. V. Shah, MD, Nicholas L. Mllis, MD

5 Supplemental content

IMPORTANCE High-sensitivity cardiac troponin I testing is widely used to evaluate patients with suspected acute coronary syndrome. A cardiac troponin concentration of less than 5 ng/L identifies patients at presentation as low risk, but the optimal threshold is uncertain.

**OBJECTIVE** To evaluate the performance of a cardiac troponin I threshold of 5 ng/L at presentation as a risk stratification tool in patients with suspected acute coronary syndrome.

DATA SOURCES Systematic search of MEDLINE, EMBASE, Cochrane, and Web of Science databases from January 1, 2006, to March 18, 2017.

STUDY SELECTION Prospective studies measuring high-sensitivity cardiac troponin I concentrations in patients with suspected acute coronary syndrome in which the diagnosis was adjudicated according to the universal definition of myocardial infarction.

DATA EXTRACTION AND SYNTHESIS The systematic review identified 19 cohorts. Individual patient-level data were obtained from the corresponding authors of 17 cohorts, with aggregate data from 2 cohorts. Meta-estimates for primary and secondary outcomes were derived using a binomial-normal random-effects model.

MAIN OUTCOMES AND MEASURES The primary outcome was myocardial infarction or cardiac death at 30 days. Performance was evaluated in subgroups and across a range of troponin concentrations (2-16 ng/L) using individual patient data.

RESULTS Of 11845 articles identified, 104 undervent full-text review, and 19 cohorts from 9 countries were included. Among 22 457 patients included in the meta-analysis (mean age, 62 [50, 15.5] years, n = 9329 women [41.5%]), the primary outcome occurred in 2786 (12.4%). Cardiac troponin I concentrations were less than 5 ng/L at presentation in 1012 patients (49%), in whom there were 60 missed index or 30-04 ayevents (59 index myocardial infractions, I myocardial infraction at 30 days, and no cardiac deaths at 30 days). This resulted in a negative predictive value of 99.5% (55% (1.99.3%-99.6%) for the primary outcome. There were no cardiac deaths at 30 days and 7 (0.1%) at 1 year, with a negative predictive value of 99.9% (55% (1.99.7%-99.9%) for cardiac death.

CONCLUSIONS AND RELEVANCE Among patients with suspected acute coronary syndrome, a high-sensitivity cardiac troponin I concentration of less than 5 ng/L identified those at low risk of myocardial infarction or cardiac death within 30 days. Further research is needed to understand the clinical utility and cost-effectiveness of this approach to risk stratification.

Author Affiliations: Author affiliations are listed at the end of this article. Corresponding Author: Nicholas L. Mills, MD, BHF/University Centre for

Cardiovascular Science, University of

Edinburgh, Edinburgh EH16 4SA,

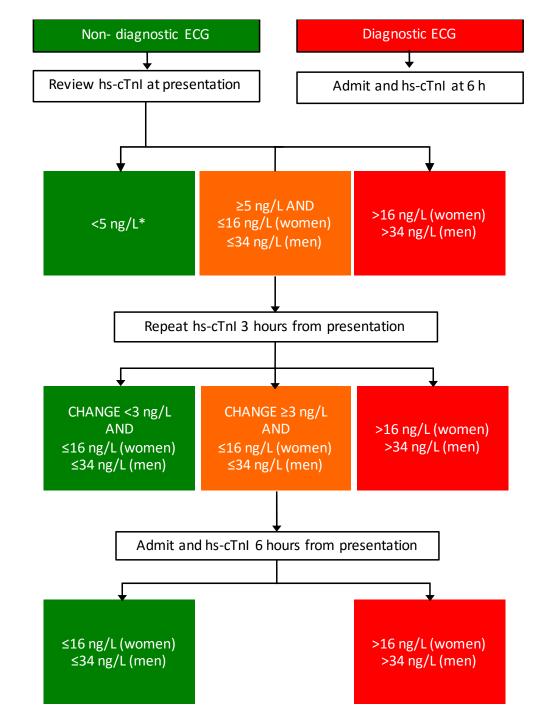
Scotland (nick.mills@ed.ac.uk).

JAMA. doi:10.1001/jama.2017.17488 Published online November 11, 2017.

© 2017 American Medical Association. All rights reserved.



Chapman AR and coauthors


Association of High-Sensitivity Cardiac Troponin I Concentration With Cardiac Outcomes in Patients With Suspected Acute Coronary Syndrome

Published online November 11, 2017

Available at jama.com and on The JAMA Network Reader at mobile.jamanetwork.com



The **JAMA** Network



### Single test rule-out of acute myocardial infarction with a novel point-of-care troponin assay: an early report of a prospective observational study

John W Pickering, Joanna M Young, Peter M George, Antony S Watson, Sally J Aldous, Richard W Troughton, Christopher J Pemberton, A Mark Richards, Louise A Cullen, Martin P Than

Christchurch Hospital, University of Otago Christchurch, Assure Health, National University of Singapore, Royal Brisbane and Women's Hospital, Brisbane

JAMA Cardiology Oct 2018

# Setting

• single, regional, general and tertiary metropolitan ED

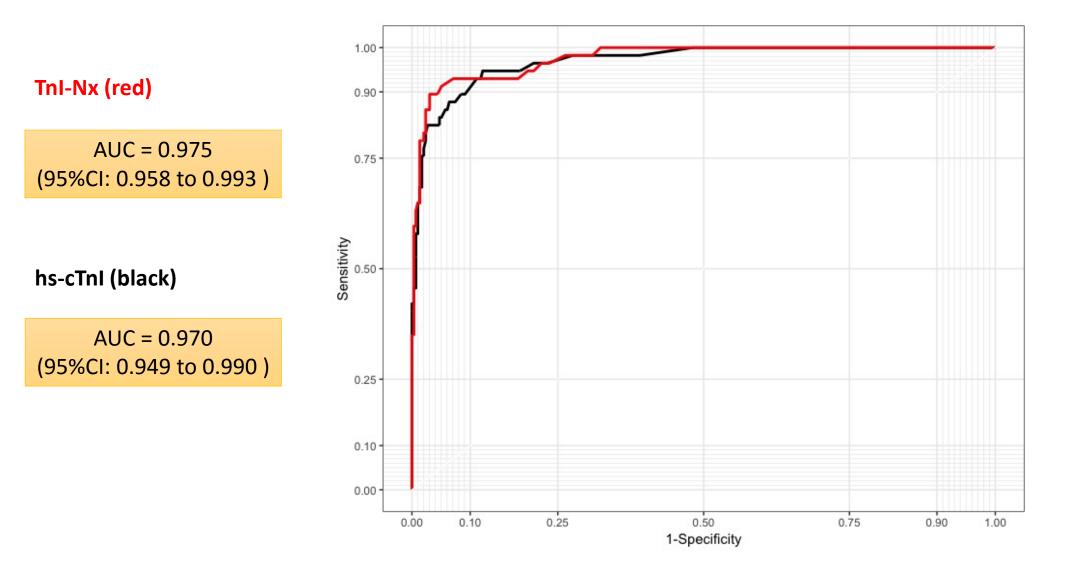
# PARTICIPANTS

- Adults (≥18yrs)
- Acute presentation from community
- Symptoms suggestive of AMI
- Clinician intention to investigate for AMI with troponins

Exclusions

STEMI

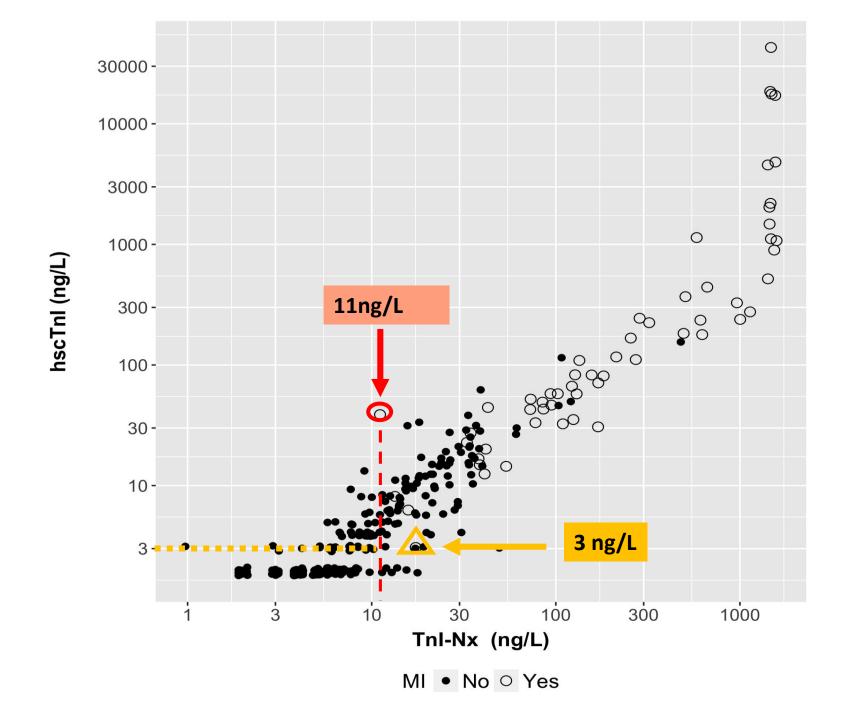
Clear non-cardiac cause

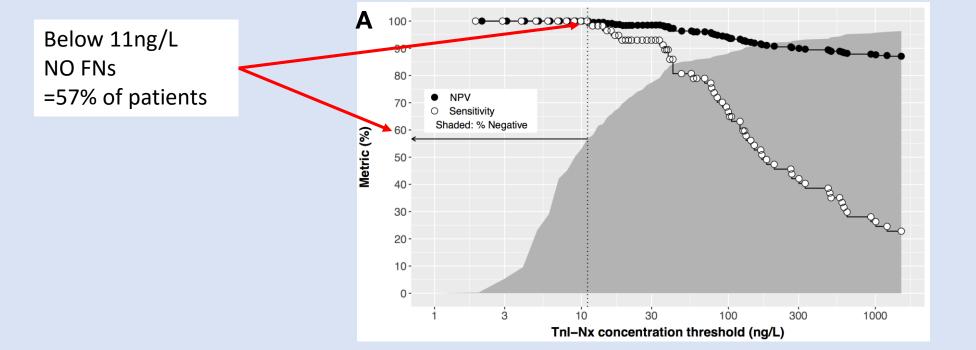

transfers

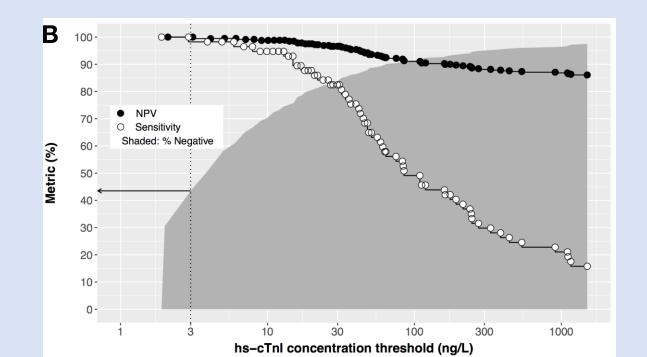
# Tnl-Nx

### Does TnI-Nx have same accuracy for AMI as hs-TnI?

- Compared TnI-Nx and hs-cTnI concentrations in 2629 blood samples.
- There was a very high agreement between the two assays, and on presentation
- no difference observed in discrimination ability for AMI (TnI-Nx AUC 0.975 cf hs-cTn AUC 0.970; p=0.46).


### Comparison of ROC curves





# Can TnI-Nx give safe baseline rule-out?

- If so
  - In what proportion of patients?

| Variable                                | Entire cohort |
|-----------------------------------------|---------------|
|                                         | (n=354)       |
| Male (%)                                | 255 (72.0 %)  |
| Age, mean (SD)                          | 62 +/- 12     |
| Smoking, No. (%)                        | 46 (13.2 %)   |
| Blood Pressure, mean (SD), mm Hg        |               |
| Systolic                                | 148 +/- 27    |
| Diastolic                               | 83 +/- 14     |
| Diabetes, No. (%)                       | 46 (13.0%)    |
| Dyslipidemia, No. (%)                   | 234 (66.0%)   |
| Hypertension, No. (%)                   | 189 (53.3%)   |
| Previous Heart Failure, No. (%)         | 19 (5.4%)     |
| Previous Myocardial Infarction, No. (%) | 100 (28.2%)   |
| Peripheral Vascular disease, No. (%)    | 21 (5.9%)     |
| Previous Angina, No. (%)                | 159 (44.9%)   |
| Previous CABG, No. (%)                  | 21 (5.9%)     |
| Previous PTCA, No. (%)                  | 106 (29.9%)   |
| Previous TIA, No. (%)                   | 12 (3.4%)     |
| Time from symptom onset                 |               |
| Median (IQR), h                         | 4.5 (3-8.1)   |
| < 2h, No. (%)                           | 28 (7.9%)     |
| 2 to <3h, No. (%)                       | 57 (16.1%)    |
| 3 to 24h, No. (%)                       | 269 (76.0%)   |
|                                         |               |







| Tnl Nx | Test       | Disease | Not Disease |
|--------|------------|---------|-------------|
|        | >= 11 ng/L | 57      | 96          |
|        | < 11 ng/L  | 0       | 201         |

Sensitivity: 100% (93.7% to 100%) NPV: 100% (98.2% to 100%) Negative: 57%

| hscTnl | Test      | Disease | Not Disease |
|--------|-----------|---------|-------------|
|        | >= 3 ng/L | 57      | 143         |
|        | < 3 ng/L  | 0       | 154         |

Sensitivity: 100% (93.7% to 100%) NPV: 100% (97.6% to 100%) Negative: 44%

# CONCLUSION

- New generation of troponins allow accurate use of very thresholds for rule-out of AMI
- Rule-out of AMI using a single (baseline) lab. test now proven
- In near future
  - Single test rule-out using point of care (15-minute turnaround)

# THANK YOU

If you were a patient and your doctor told you that an important test result was 'negative' would you be satisfied and reassured?

1. Yes

2. No

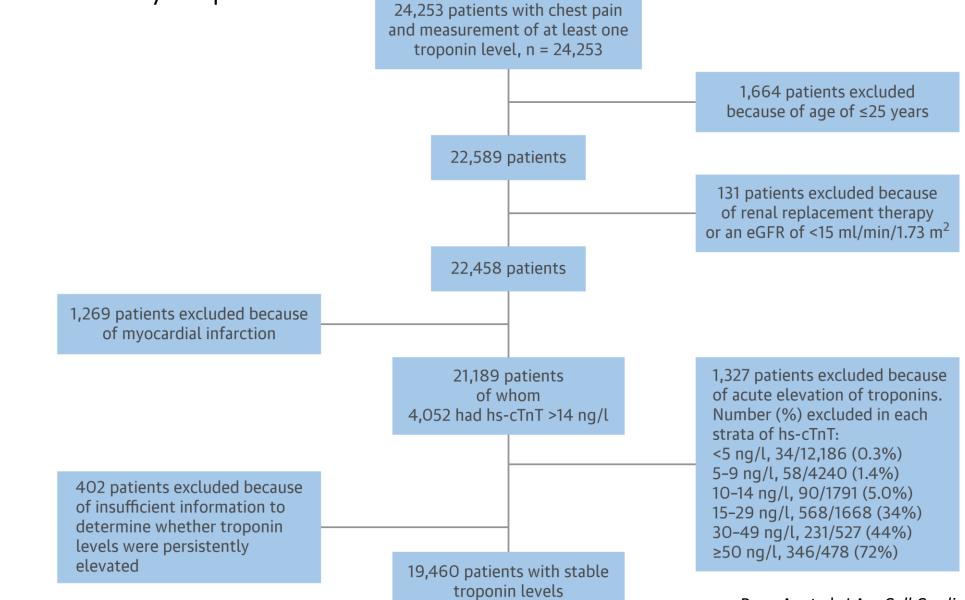
If you were a patient and your doctor told you that the result of an important test suggested that you had a 1 in 7 chance of death in the next 3-4 years would you be satisfied and reassured?

- 1. Yes
- 2. No

What is the significance to the patient of being diagnosed with NSTEMI?

- 1. Recognised increase in ongoing risk
- 2. Thorough further investigations
- 3. Secondary prevention Rx
- 4. Insurance

JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY © 2017 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY-NC-ND LICENSE (http://creativecommons.org/licenses/by-nc-nd/4.0/). VOL. 70, NO. 18, 2017


ISSN 0735-1097

http://dx.doi.org/10.1016/j.jacc.2017.08.064

# Stable High-Sensitivity Cardiac Troponin T Levels and Outcomes in Patients With Chest Pain



Andreas Roos, MD,<sup>a,b</sup> Nadia Bandstein, MD, РнD,<sup>a,b</sup> Magnus Lundbäck, MD, РнD,<sup>c,d</sup> Ola Hammarsten, MD, РнD,<sup>e</sup> Rickard Ljung, MD, РнD,<sup>f</sup> Martin J. Holzmann, MD, РнD<sup>a,b</sup> Stable H-S Cardiac Troponin T Levels and Outcomes in Patients With Chest Pain: Selection of Study Population



#### Stable H-S Cardiac Troponin T Levels and Outcomes in Patients with Chest Pain: Patient Characteristics High-Sensitivity Cardiac Troponin T Levels

| All Patients | <5 ng/l                                                                                                                                                                                                                                         | 5-9 ng/l                                                                                                                                                                                                                                                                                                                                                              | 10-14 ng/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15-29 ng/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30-49 ng/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≥50 ng/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 19,460 (100) | 12,152 (62)                                                                                                                                                                                                                                     | 4,097 (21)                                                                                                                                                                                                                                                                                                                                                            | 1,683 (8.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,100 (5.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 296 (1.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 132 (0.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| $54 \pm 16$  | $48 \pm 13$                                                                                                                                                                                                                                     | $59 \pm 14$                                                                                                                                                                                                                                                                                                                                                           | $69\pm14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $77 \pm 12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 79 ± 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $80 \pm 13$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 9,696 (50)   | 6,757 (56)                                                                                                                                                                                                                                      | 1,561 (38)                                                                                                                                                                                                                                                                                                                                                            | 726 (43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 498 (45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 105 (35)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49 (37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|              |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 17,618 (91)  | 11,896 (98)                                                                                                                                                                                                                                     | 3,723 (91)                                                                                                                                                                                                                                                                                                                                                            | 1,276 (76)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 595 (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90 (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38 (29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1,171 (6.0)  | 219 (1.8)                                                                                                                                                                                                                                       | 293 (7.2)                                                                                                                                                                                                                                                                                                                                                             | 288 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 278 (25)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69 (23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 513 (2.6)    | 33 (0.3)                                                                                                                                                                                                                                        | 77 (1.9)                                                                                                                                                                                                                                                                                                                                                              | 103 (6.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 171 (15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 89 (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40 (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 158 (0.8)    | 4 (0.03)                                                                                                                                                                                                                                        | 4 (0.1)                                                                                                                                                                                                                                                                                                                                                               | 16 (1.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56 (5.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30 (23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|              |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 1,283 (6.6)  | 348 (2.9)                                                                                                                                                                                                                                       | 344 (8.4)                                                                                                                                                                                                                                                                                                                                                             | 225 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 239 (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88 (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39 (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 831 (4.3)    | 116 (1.0)                                                                                                                                                                                                                                       | 148 (3.6)                                                                                                                                                                                                                                                                                                                                                             | 147 (8.7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 244 (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 123 (42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53 (40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 673 (3.5)    | 181 (1.5)                                                                                                                                                                                                                                       | 153 (3.7)                                                                                                                                                                                                                                                                                                                                                             | 116 (6.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 144 (13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58 (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1,405 (7.2)  | 403 (3.3)                                                                                                                                                                                                                                       | 405 (9.9)                                                                                                                                                                                                                                                                                                                                                             | 276 (16)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 223 (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68 (23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30 (23)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1,770 (9.1)  | 465 (3.8)                                                                                                                                                                                                                                       | 440 (11)                                                                                                                                                                                                                                                                                                                                                              | 305 (18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 358 (33)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 136 (46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 66 (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 1,588 (8.2)  | 513 (4.2)                                                                                                                                                                                                                                       | 426 (10)                                                                                                                                                                                                                                                                                                                                                              | 284 (17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 238 (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88 (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39 (30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4,350 (22)   | 1,411 (12)                                                                                                                                                                                                                                      | 1,184 (29)                                                                                                                                                                                                                                                                                                                                                            | 782 (46)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 680 (62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 208 (70)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 85 (64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|              |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 3,147 (16)   | 971 (8.0)                                                                                                                                                                                                                                       | 878 (21)                                                                                                                                                                                                                                                                                                                                                              | 578 (34)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500 (45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160 (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60 (45)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4,141 (21)   | 1,432 (12)                                                                                                                                                                                                                                      | 1,120 (27)                                                                                                                                                                                                                                                                                                                                                            | 705 (42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 615 (56)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 186 (63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83 (63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 4,186 (22)   | 1,436 (12)                                                                                                                                                                                                                                      | 1,182 (29)                                                                                                                                                                                                                                                                                                                                                            | 725 (43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 581 (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 182 (61)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80 (61)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| 3,247 (17)   | 1,140 (9.4)                                                                                                                                                                                                                                     | 954 (23)                                                                                                                                                                                                                                                                                                                                                              | 545 (32)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 435 (40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 124 (42)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49 (37)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|              | 19,460 (100)<br>$54 \pm 16$<br>9,696 (50)<br>17,618 (91)<br>1,171 (6.0)<br>513 (2.6)<br>158 (0.8)<br>1,283 (6.6)<br>831 (4.3)<br>673 (3.5)<br>1,405 (7.2)<br>1,770 (9.1)<br>1,588 (8.2)<br>4,350 (22)<br>3,147 (16)<br>4,141 (21)<br>4,186 (22) | 19,460 (100)12,152 (62) $54 \pm 16$ $48 \pm 13$ 9,696 (50) $6,757$ (56)17,618 (91) $11,896$ (98)1,171 (6.0) $219$ (1.8)513 (2.6) $33$ (0.3)158 (0.8) $4$ (0.03)1,283 (6.6) $348$ (2.9)831 (4.3)116 (1.0)673 (3.5)181 (1.5)1,405 (7.2)403 (3.3)1,770 (9.1)465 (3.8)1,588 (8.2)513 (4.2)4,350 (22)1,411 (12)3,147 (16)971 (8.0)4,141 (21)1,432 (12)4,186 (22)1,436 (12) | 19,460 (100)12,152 (62)4,097 (21) $54 \pm 16$ $48 \pm 13$ $59 \pm 14$ 9,696 (50) $6,757$ (56) $1,561$ (38)17,618 (91) $11,896$ (98) $3,723$ (91) $1,171$ (6.0) $219$ (1.8) $293$ (7.2) $513$ (2.6) $33$ (0.3) $77$ (1.9) $158$ (0.8) $4$ (0.03) $4$ (0.1)1,283 (6.6) $348$ (2.9) $344$ (8.4)831 (4.3) $116$ (1.0) $148$ (3.6) $673$ (3.5) $181$ (1.5) $153$ (3.7) $1,405$ (7.2) $403$ (3.3) $405$ (9.9) $1,770$ (9.1) $465$ (3.8) $440$ (11) $1,588$ (8.2) $513$ (4.2) $426$ (10) $4,350$ (22) $1,411$ (12) $1,184$ (29) $3,147$ (16) $971$ (8.0) $878$ (21) $4,141$ (21) $1,436$ (12) $1,182$ (29) | 19,460 (100)12,152 (62)4,097 (21)1,683 (8.6) $54 \pm 16$ $48 \pm 13$ $59 \pm 14$ $69 \pm 14$ 9,696 (50) $6,757$ (56) $1,561$ (38) $726$ (43)17,618 (91) $11,896$ (98) $3,723$ (91) $1,276$ (76) $1,171$ (6.0) $219$ (1.8) $293$ (7.2) $288$ (17) $513$ (2.6) $33$ (0.3) $77$ (1.9) $103$ (6.1)158 (0.8) $4$ (0.03) $4$ (0.1)16 (1.0)1,283 (6.6) $348$ (2.9) $344$ (8.4) $225$ (13)831 (4.3) $116$ (1.0) $148$ (3.6) $147$ (8.7)673 (3.5) $181$ (1.5) $153$ (3.7) $116$ (6.9)1,405 (7.2) $403$ (3.3) $405$ (9.9) $276$ (16)1,770 (9.1) $465$ (3.8) $440$ (11) $305$ (18)1,588 (8.2) $513$ (4.2) $426$ (10) $284$ (17)4,350 (22) $1,411$ (12) $1,184$ (29) $782$ (46)3,147 (16) $971$ (8.0) $878$ (21) $578$ (34)4,186 (22) $1,436$ (12) $1,182$ (29) $725$ (43) | 19,460 (100)12,152 (62)4,097 (21)1,683 (8.6)1,100 (5.7) $54 \pm 16$ $48 \pm 13$ $59 \pm 14$ $69 \pm 14$ $77 \pm 12$ 9,696 (50) $6,757$ (56)1,561 (38) $726$ (43) $498$ (45)17,618 (91)11,896 (98) $3,723$ (91)1,276 (76) $595$ (54)1,171 (6.0)219 (1.8)293 (7.2)288 (17)278 (25)513 (2.6)33 (0.3)77 (1.9)103 (6.1)171 (15)158 (0.8)4 (0.03)4 (0.1)16 (1.0)56 (5.1) $1,283$ (6.6)348 (2.9)344 (8.4)225 (13)239 (22)831 (4.3)116 (1.0)148 (3.6)147 (8.7)244 (22)673 (3.5)181 (1.5)153 (3.7)116 (6.9)144 (13)1,405 (7.2)403 (3.3)405 (9.9)276 (16)223 (20)1,770 (9.1)465 (3.8)440 (11)305 (18)358 (33)1,588 (8.2)513 (4.2)426 (10)284 (17)238 (22)4,350 (22)1,411 (12)1,184 (29)782 (46)680 (62)3,147 (16)971 (8.0)878 (21)578 (34)500 (45)4,186 (22)1,436 (12)1,120 (27)705 (42)615 (56)4,186 (22)1,436 (12)1,182 (29)725 (43)581 (53) | 19,460 (100)12,152 (62)4,097 (21)1,683 (8.6)1,100 (5.7)296 (1.5) $54 \pm 16$ $48 \pm 13$ $59 \pm 14$ $69 \pm 14$ $77 \pm 12$ $79 \pm 11$ 9,696 (50) $6,757$ (56)1,561 (38) $726$ (43) $498$ (45)105 (35)17,618 (91)11,896 (98) $3,723$ (91)1,276 (76) $595$ (54) $90$ (30)1,171 (6.0)219 (1.8)293 (7.2)288 (17)278 (25) $69$ (23)513 (2.6)33 (0.3)77 (1.9)103 (6.1)171 (15)89 (30)158 (0.8)4 (0.03)4 (0.1)16 (1.0)56 (5.1)48 (16)1,283 (6.6)348 (2.9)344 (8.4)225 (13)239 (22)88 (30)831 (4.3)116 (1.0)148 (3.6)147 (8.7)244 (22)123 (42)673 (3.5)181 (1.5)153 (3.7)116 (6.9)144 (13)58 (20)1,405 (7.2)403 (3.3)405 (9.9)276 (16)223 (20)68 (23)1,770 (9.1)465 (3.8)440 (11)305 (18)358 (33)136 (46)1,588 (8.2)513 (4.2)426 (10)284 (17)238 (22)88 (30)4,350 (22)1,411 (12)1,184 (29)782 (46)680 (62)208 (70)3,147 (16)971 (8.0)878 (21)578 (34)500 (45)160 (54)4,186 (22)1,436 (12)1,182 (29)725 (43)581 (53)182 (61) |  |

#### Hazard Ratios for All-Cause Mortality, MI, and Heart Failure Related to hs-cTnT Levels in 19,460 Patients Without MI

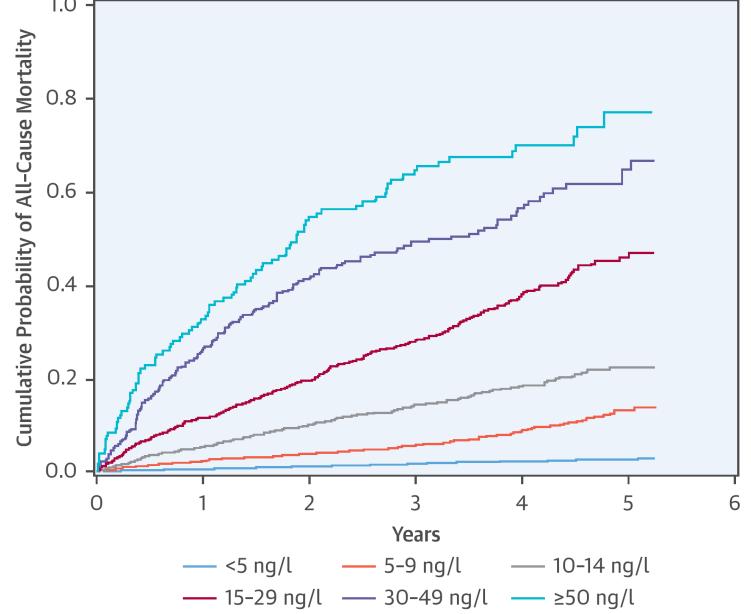
|                                     |                  |                  | High-Sensitivity C | High-Sensitivity Cardiac Troponin T Levels |                     |                     |  |
|-------------------------------------|------------------|------------------|--------------------|--------------------------------------------|---------------------|---------------------|--|
|                                     | <5 ng/l          | 5-9 ng/l         | 10-14 ng/l         | 15-29 ng/l                                 | 30-49 ng/l          | ≥ <b>50 ng/l</b>    |  |
| Number of patients                  | 12,152 (62)      | 4,097 (21)       | 1,683 (8.6)        | 1,100 (5.7)                                | 296 (1.5)           | 132 (0.7)           |  |
| All-cause mortality*                |                  |                  |                    |                                            |                     |                     |  |
| Number of deaths                    | 224 (1.8)        | 263 (6.4)        | 251 (15)           | 360 (33)                                   | 160 (54)            | 91 (69)             |  |
| Rate per yr                         | 0.5 (0.5-0.6)    | 2.1 (1.9-2.4)    | 5.1 (4.5-5.7)      | 12 (10-13)                                 | 23 (20-27)          | 33 (27-40)          |  |
| 30-day event rate                   | 2 (0.02)         | 8 (0.2)          | 8 (0.5)            | 16 (1.4)                                   | 7 (2.4)             | 9 (6.8)             |  |
| Hazard ratio (95% CI)               |                  |                  |                    |                                            |                     |                     |  |
| Unadjusted                          | Reference        | 4.17 (3.49-4.99) | 9.97 (8.32-11.9)   | 22.6 (19.2-26.8)                           | 44.4 (36.3-54.5)    | 64.1 (50.2-81.9)    |  |
| Multivariable adjusted†             | Reference        | 2.00 (1.66-2.42) | 2.92 (2.38-3.59)   | 4.07 (3.28-5.05)                           | 6.77 (5.22-8.78)    | 9.68 (7.18-13.0)    |  |
| Cardiovascular mortality‡           |                  |                  |                    |                                            |                     |                     |  |
| Number of deaths                    | 15 (0.1)         | 37 (0.9)         | 57 (3.4)           | 90 (8.2)                                   | 53 (18)             | 36 (27)             |  |
| Rate per yr                         | 0.05 (0.03-0.08) | 0.5 (0.3-0.6)    | 1.8 (1.4-2.3)      | 4.3 (3.4-5.2)                              | 11 (7.8-13)         | 17 (12-23)          |  |
| 30-day event rate                   | 0                | 1 (0.02)         | 3 (0.2)            | 3 (0.3)                                    | 4 (1.3)             | 4 (3.0)             |  |
| Hazard ratio (95% CI)               |                  |                  |                    |                                            |                     |                     |  |
| Unadjusted                          | Reference        | 9.60 (5.26-17.5) | 35.9 (20.3-63.4)   | 82.7 (47.8-142.8)                          | 203.0 (114.4-360.3) | 331.4 (181.3-605.7) |  |
| Multivariable adjusted <sup>+</sup> | Reference        | 3.59 (1.93-6.66) | 7.32 (3.96-13.5)   | 9.12 (4.87-17.1)                           | 17.5 (8.86-34.5)    | 27.0 (13.2-55.4)    |  |
| Noncardiovascular mortality         | ŧ                |                  |                    |                                            |                     |                     |  |
| Number of deaths                    | 147 (1.2)        | 129 (3.1)        | 108 (6.4)          | 145 (13)                                   | 65 (22)             | 36 (27)             |  |
| Rate per yr                         | 0.5 (0.4-0.6)    | 1.7 (1.4-2.0)    | 3.5 (2.8-4.2)      | 6.9 (5.8-8.0)                              | 13 (9.9-16)         | 17 (12-23)          |  |
| 30-day event rate                   | 2 (0.02)         | 7 (0.2)          | 5 (0.3)            | 13 (1.2)                                   | 3 (1.0)             | 5 (3.8)             |  |
| Hazard ratio (95% CI)               |                  |                  |                    |                                            |                     |                     |  |
| Unadjusted                          | Reference        | 3.23 (2.55-4.10) | 6.61 (5.16-8.49)   | 13.1 (10.4–16.5)                           | 24.5 (18.3-32.8)    | 32.3 (22.4-46.5)    |  |
| Multivariable adjusted <sup>+</sup> | Reference        | 1.80 (1.40-2.33) | 2.52 (1.89–3.36)   | 3.49 (2.58-4.71)                           | 5.95 (4.09-8.66)    | 7.78 (5.02-12.1)    |  |
| Myocardial infarction‡              |                  |                  |                    |                                            |                     |                     |  |
| Number of MIs                       | 90 (0.7)         | 60 (1.5)         | 66 (3.9)           | 56 (5.1)                                   | 23 (7.8)            | 9 (6.8)             |  |
| Rate per yr                         | 0.3 (0.3-0.4)    | 0.8 (0.6-1.0)    | 2.2 (1.7-2.7)      | 2.8 (2.1-3.5)                              | 4.9 (2.9-6.9)       | 4.5 (1.6-7.4)       |  |
| 30-day event rate                   | 2 (0.02)         | 2 (0.05)         | 12 (0.7)           | 4 (0.4)                                    | 3 (1.0)             | 2 (1.5)             |  |
| Hazard ratio (95% CI)               |                  |                  |                    |                                            |                     |                     |  |
| Unadjusted                          | Reference        | 2.44 (1.75-3.38) | 6.68 (4.86-9.19)   | 8.45 (6.05-11.8)                           | 14.7 (9.29-23.2)    | 13.4 (6.78-26.7)    |  |
| Multivariable adjusted‡             | Reference        | 1.18 (0.83-1.67) | 2.06 (1.42-3.00)   | 1.83 (1.20-2.80)                           | 2.66 (1.51-4.68)    | 2.77 (1.27-6.01)    |  |
| Heart failure‡                      |                  |                  |                    |                                            |                     |                     |  |
| Number of cases                     | 41 (0.3)         | 78 (1.9)         | 84 (5.0)           | 175 (16)                                   | 75 (25)             | 35 (27)             |  |
| Rate per yr                         | 0.1 (0.1-0.2)    | 1.0 (0.8-1.3)    | 2.8 (2.2-3.4)      | 9.3 (7.9–11)                               | 18 (14–23)          | 20 (13-27)          |  |
| 30-day event rate                   | 3 (0.02)         | 8 (0.2)          | 11 (0.6)           | 30 (2.7)                                   | 13 (4.4)            | 5 (3.8)             |  |
| Hazard ratio (95% CI)               |                  |                  |                    |                                            |                     |                     |  |
| Unadjusted                          | Reference        | 6.97 (4.77-10.2) | 18.7 (12.8-27.1)   | 61.1 (43.5-86.0)                           | 116 (79.0-169)      | 125 (79.6-196)      |  |
| Multivariable adjusted‡             | Reference        | 3.66 (2.46-5.45) | 6.04 (3.97-9.19)   | 10.7 (7.00-16.3)                           | 13.1 (8.03-21.3)    | 13.3 (7.69–23.1)    |  |
|                                     |                  |                  |                    |                                            |                     |                     |  |

Values are n (%) or % (95% CI) unless otherwise indicated. \*End of follow-up for all-cause mortality was March 28, 2016. † Multivariable adjustment was made for age, sex, eGFR, prior MI, heart failure, stroke, chronic obstructive pulmonary disease, atrial fibrillation, diabetes, hypertension, and treatment with aspirin, beta-blockers, ACE inhibitor/ARBs, and statins. ‡ End of follow-up for cardiovascular mortality, non-cardiovascular mortality, MI, and heart failure was December 31, 2014. Cases of cardiovascular mortality and noncardiovascular mortality do not add up to cases of all-cause mortality because of the different follow-up times for all-cause and cause-specific mortality. Rate per year means number of events per 100 person-years.

#### Hazard Ratios for All-Cause Mortality, MI, and Heart Failure Related to hs-cTnT Levels in 19,460 Patients Without MI

|                             |                                    |                  | ingli sensitivity e |                   | , vetb              |                     |
|-----------------------------|------------------------------------|------------------|---------------------|-------------------|---------------------|---------------------|
|                             | <5 ng/l                            | 5-9 ng/l         | 10-14 ng/l          | 15-29 ng/l        | 30-49 ng/l          | ≥50 ng/l            |
| Number of patients          | 12,152 (62) 4,097 (21) 1,683 (8.6) |                  | 1,100 (5.7)         | 296 (1.5)         | 132 (0.7)           |                     |
| All-cause mortality*        |                                    |                  |                     |                   |                     |                     |
| Number of deaths            | 224 (1.8)                          | 263 (6.4)        | 251 (15)            | 360 (33)          | 160 (54)            | 91 (69)             |
| Rate per yr                 | 0.5 (0.5-0.6)                      | 2.1 (1.9-2.4)    | 5.1 (4.5-5.7)       | 12 (10-13)        | 23 (20-27)          | 33 (27-40)          |
| 30-day event rate           | 2 (0.02)                           | 8 (0.2)          | 8 (0.5)             | 16 (1.4)          | 7 (2.4)             | 9 (6.8)             |
| Hazard ratio (95% CI)       |                                    |                  |                     |                   |                     |                     |
| Unadjusted                  | Reference                          | 4.17 (3.49-4.99) | 9.97 (8.32-11.9)    | 22.6 (19.2-26.8)  | 44.4 (36.3-54.5)    | 64.1 (50.2-81.9)    |
| Multivariable adjusted†     | Reference                          | 2.00 (1.66-2.42) | 2.92 (2.38-3.59)    | 4.07 (3.28-5.05)  | 6.77 (5.22-8.78)    | 9.68 (7.18-13.0)    |
| Cardiovascular mortality‡   |                                    |                  |                     |                   |                     |                     |
| Number of deaths            | 15 (0.1)                           | 37 (0.9)         | (3.4)               | 90 (8.2)          | 53 (18)             | 36 (27)             |
| Rate per yr                 | 0.05 (0.03-0.08)                   | 0.5 (0.3-0.6)    | 1.8 1.4-2.3)        | 4.3 (3.4-5.2)     | 11 (7.8-13)         | 17 (12-23)          |
| 30-day event rate           | 0                                  | 1 (0.02)         | (0.2)               | 3 (0.3)           | 4 (1.3)             | 4 (3.0)             |
| Hazard ratio (95% CI)       |                                    |                  |                     |                   |                     |                     |
| Unadjusted                  | Reference                          | 9.60 (5.26-17.5) | 35.9 (0.3-63.4)     | 82.7 (47.8-142.8) | 203.0 (114.4-360.3) | 331.4 (181.3-605.7) |
| Multivariable adjusted†     | Reference                          | 3.59 (1.93-6.66) | 7.32 3.96-13.5)     | 9.12 (4.87-17.1)  | 17.5 (8.86-34.5)    | 27.0 (13.2-55.4)    |
| Noncardiovascular mortality | ŧ                                  |                  |                     |                   |                     |                     |
| Number of deaths            | 147 (1.2)                          | 129 (3.1)        | 16.4)               | 145 (13)          | 65 (22)             | 36 (27)             |
| Rate per yr                 | 0.5 (0.4-0.6)                      | 1.7 (1.4-2.0)    | 3,5 2,8-4.2)        | 6.9 (5.8-8.0)     | 13 (9.9-16)         | 17 (12-23)          |
| 30-day event rate           | 2 (0.02)                           | 7 (0.2)          | (0.3)               | 13 (1.2)          | 3 (1.0)             | 5 (3.8)             |
|                             |                                    |                  | •                   |                   |                     |                     |

#### High-Sensitivity Cardiac Troponin T Levels


|                         | < <b>5 ng/l</b> | 5-9 ng/l         | 10-14 ng/l       | 15-29 ng/l       | 30-49 ng/l       | ≥50 ng/l         |
|-------------------------|-----------------|------------------|------------------|------------------|------------------|------------------|
| Number of patients      | 12,152 (62)     | 4,097 (21)       | 1,683 (8.6)      | 1,100 (5.7)      | 296 (1.5)        | 132 (0.7)        |
| All-cause mortality*    |                 |                  |                  |                  |                  |                  |
| Number of deaths        | 224 (1.8)       | 263 (6.4)        | 251 (15)         | 360 (33)         | 160 (54)         | 91 (69)          |
| Rate per yr             | 0.5 (0.5-0.6)   | 2.1 (1.9-2.4)    | 5.1 (4.5-5.7)    | 12 (10-13)       | 23 (20-27)       | 33 (27-40)       |
| 30-day event rate       | 2 (0.02)        | 8 (0.2)          | 8 (0.5)          | 16 (1.4)         | 7 (2.4)          | 9 (6.8)          |
| Hazard ratio (95% CI)   |                 |                  |                  |                  |                  |                  |
| Unadjusted              | Reference       | 4.17 (3.49-4.99) | 9.97 (8.32-11.9) | 22.6 (19.2-26.8) | 44.4 (36.3-54.5) | 64.1 (50.2-81.9) |
| Multivariable adjusted† | Reference       | 2.00 (1.66-2.42) | 2.92 (2.38-3.59) | 4.07 (3.28-5.05) | 6.77 (5.22-8.78) | 9.68 (7.18-13.0) |

# Hazard Ratios for All-Cause Mortality, MI, and Heart Failure Related to hs-cTnT Levels in 19,460 Patients Without MI

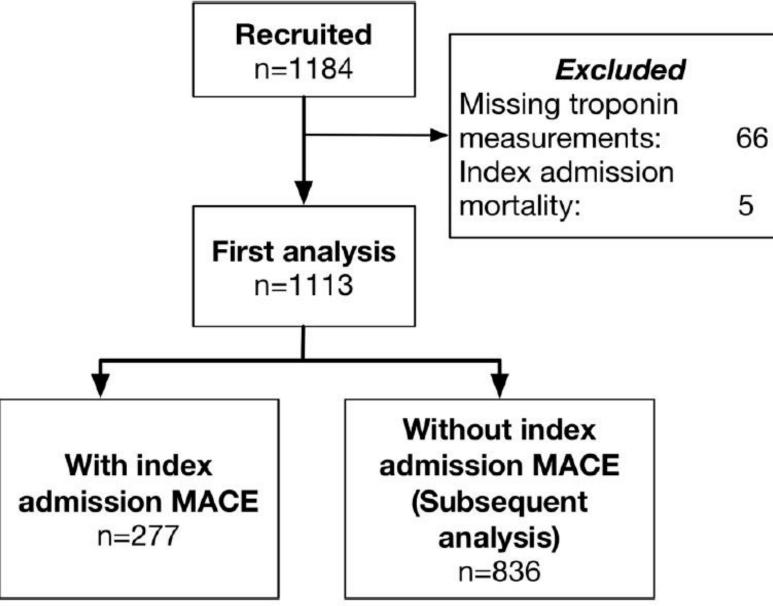
|                         | <5 ng/l       | 5-9 ng/l         | 10-14 ng/l       | 15-29 ng/l       | 30-49 ng/l       | ≥50 ng/l         |
|-------------------------|---------------|------------------|------------------|------------------|------------------|------------------|
| Number of patients      | 12,152 (62)   | 4,097 (21)       | 1,683 (8.6)      | 1,100 (5.7)      | 296 (1.5)        | 132 (0.7)        |
| All-cause mortality*    |               |                  |                  |                  |                  |                  |
| Number of deaths        | 224 (1.8)     | 263 (6.4)        | 251 (15)         | 360 (33)         | 160 (54)         | 91 (69)          |
| Rate per yr             | 0.5 (0.5-0.6) | 2.1 (1.9-2.4)    | 5.1 (4.5-5.7)    | 12 (10-13)       | 23 (20-27)       | 33 (27-40)       |
| 30-day event rate       | 2 (0.02)      | 8 (0.2)          | 8 (0.5)          | 16 (1.4)         | 7 (2.4)          | 9 (6.8)          |
| Hazard ratio (95% CI)   |               |                  |                  |                  |                  |                  |
| Unadjusted              | Reference     | 4.17 (3.49-4.99) | 9.97 (8.32-11.9) | 22.6 (19.2-26.8) | 44.4 (36.3-54.5) | 64.1 (50.2-81.9) |
| Multivariable adjusted† | Reference     | 2.00 (1.66-2.42) | 2.92 (2.38-3.59) | 4.07 (3.28-5.05) | 6.77 (5.22-8.78) | 9.68 (7.18-13.0) |
|                         |               |                  |                  | -                |                  |                  |

High-Sensitivity Cardiac Troponin T Levels

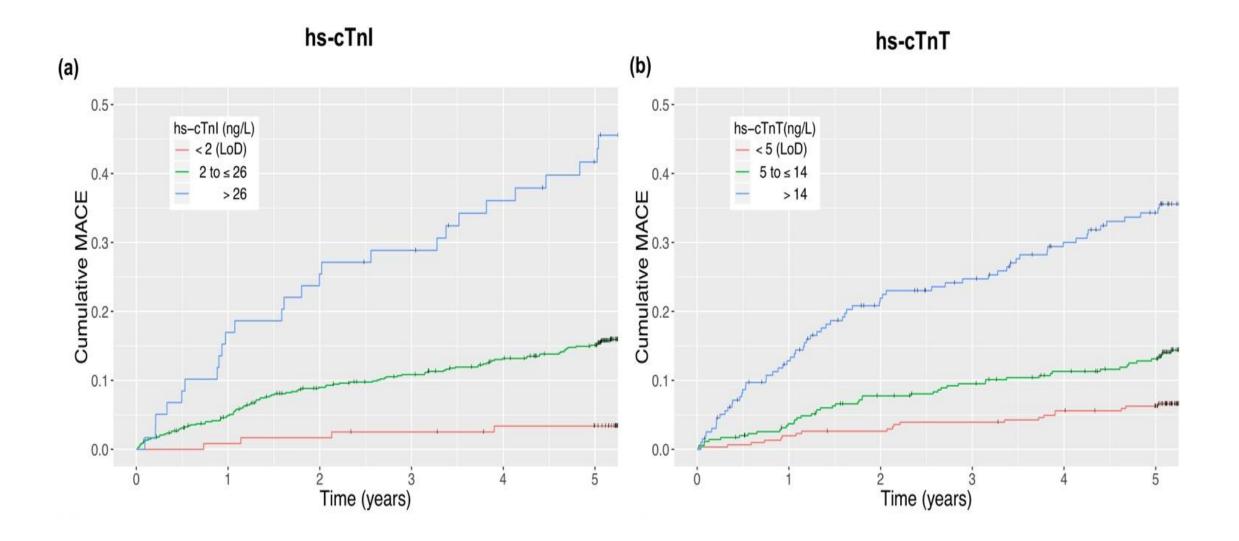
Elevated Troponin Levels and Outcomes: Cumulative Mortality in Patients With Chest Pain 1.0



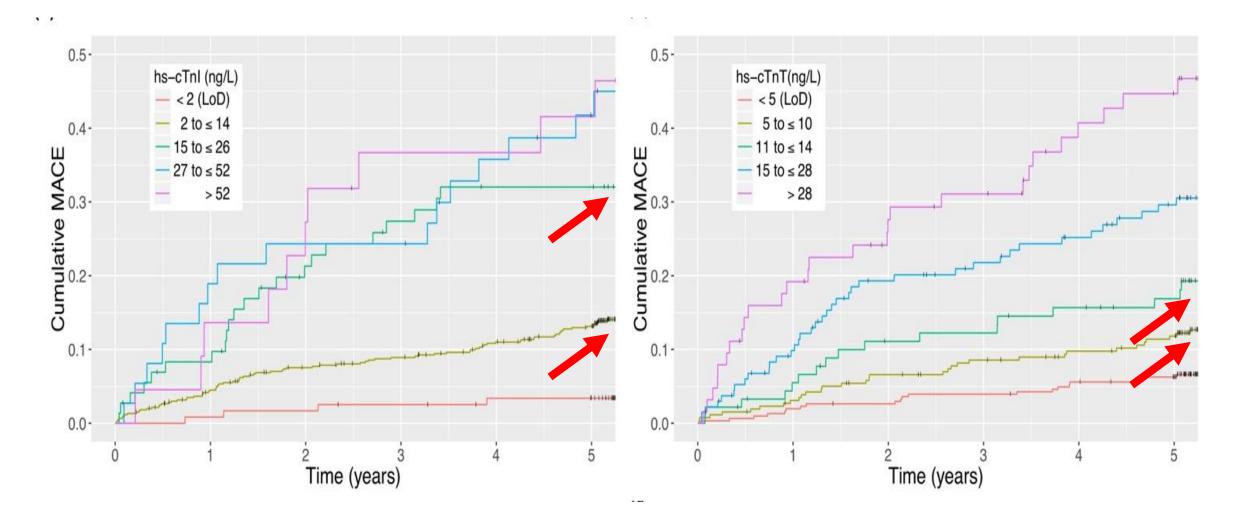
Cumulative mortality in relation to different levels of high-sensitivity cardiac troponin T.


# Hazard Ratios (95% Cls) for the Association Between Different Levels of hs-cTnT and All-Cause Mortality in Different Subgroups of Patients

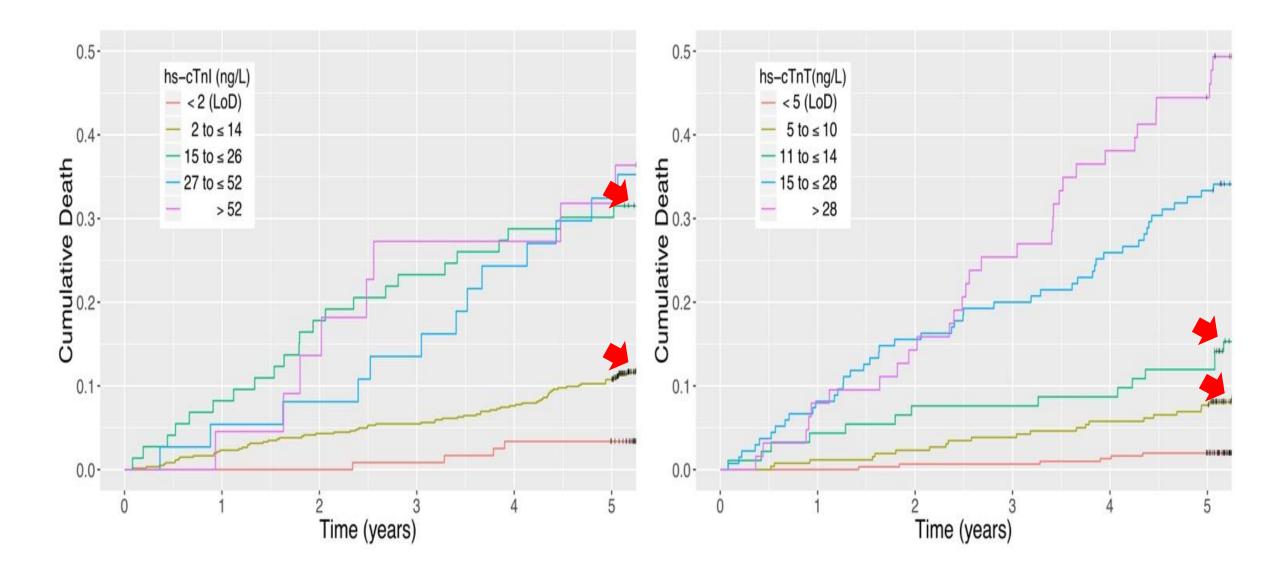
|               | hs-cTnT<br>(ng/l)    | No. of Events<br>(%)   | Adjusted Hazard Ratio<br>[95% CI]    |     |                          | hs-cTnT<br>(ng/l)    | No. of Events<br>(%)   | Adjusted Hazard Ratio<br>[95% CI]    |         |
|---------------|----------------------|------------------------|--------------------------------------|-----|--------------------------|----------------------|------------------------|--------------------------------------|---------|
| Age           |                      |                        |                                      |     | Heart Disease            |                      |                        |                                      |         |
|               | <5 (Ref.)            | 88 (0.9)               | 1.00 (Ref.)                          | +   | Yes                      | <5 (Ref.)            | 45 (4.8)               | 1.00 (Ref.)                          |         |
| •             | 5 to 9               | 63 (3.1)               | 3.95 [2.85-5.47]                     |     | 163                      | 5 to 9               | 100 (11)               | 2.15 [1.51-3.07]                     |         |
|               | 10 to 14             | 21 (5.3)               | 6.40 [3.97-10.3]                     |     |                          | 10 to 14             | 120 (19)               | 3.05 [2.15-4.32]                     |         |
|               | 15 to 29             | 14 (16)                | 15.9 [8.99-28.0]                     |     |                          | 15 to 29<br>30 to 49 | 230 (37)<br>126 (59)   | 4.77 [3.42-6.65]<br>8.05 [5.59-11.6] |         |
|               | 30 to 49<br>>49      | 3 (20)<br>1 (10)       | 17.1 [5.36-54.2]<br>5.99 [0.83-43.3] |     |                          | 30 to 49<br>>49      | 70 (75)                | 12.8 [8.6-19.2]                      |         |
| 60 70 voore   | F (D ()              |                        |                                      |     | No                       | ·C (D-6)             | 170 (1.0)              | 100 (8-6)                            |         |
| 60-79 years   | <5 (Ref.)            | 106 (4.9)              | 1.00 (Ref.)                          | 1.  | NO                       | <5 (Ref.)            | 179 (1.6)<br>163 (5.1) | 1.00 (Ref.)<br>2.37 [1.90-2.96]      |         |
|               | 5 to 9<br>10 to 14   | 127 (7.2)<br>120 (14)  | 1.73 [1.33-2.24]<br>3.16 [2.42-4.13] | -   |                          | 5 to 9<br>10 to 14   | 131 (12)               | 3.95 [3.08-5.07]                     |         |
|               | 15 to 29             | 126 (26)               | 5.25 [4.00-6.88]                     |     |                          | 15 to 29             | 130 (27)               | 5.91 [4.54-7.69]                     |         |
|               | 30 to 49             | 51 (47)                | 7.82 [5.44-11.2]                     |     |                          | 30 to 49             | 34 (40)                | 8.14 [5.45-12.1]                     | _       |
|               | >49                  | 28 (58)                | 9.30 [5.96-14.5]                     |     |                          | >49                  | 21 (54)                | 12.2 [7.52-19.7]                     |         |
|               |                      |                        |                                      |     | Coronary Artery Disease  | lisease              |                        |                                      |         |
| >79 years     | <5 (Ref.)            | 30 (19)                | 1.00 (Ref.)                          | •   | Yes                      | <5 (Ref.)            | 22 (4.6)               | 1.00 (Ref.)                          |         |
| •             | 5 to 9               | 73 (23)                | 1.42 [0.92-2.17]                     |     | 165                      | 5 to 9               | 42 (8.8)               | 1.71 [1.02-2.87]                     | -       |
|               | 10 to 14             | 110 (26)               | 1.78 [1.19-2.67]                     |     |                          | 10 to 14             | 65 (19)                | 2.81 [1.72-4.57]                     |         |
|               | 15 to 29             | 220 (41)               | 2.39 [1.62-3.53]                     |     |                          | 15 to 29             | 118 (36)               | 4.07 [2.55-6.51]                     |         |
|               | 30 to 49             | 106 (62)               | 3.92 [2.58-5.97]                     |     |                          | 30 to 49             | 66 (63)                | 7.85 [4.76-12.9]                     |         |
| Sex           | >49                  | 62 (84)                | 7.04 [4.46-11.1]                     |     |                          | >49                  | 35 (71)                | 9.40 [5.36-16.5]                     | -       |
|               | <5 (Ref.)            | 94 (1.7)               | 1.00 (Ref.)                          | •   | No                       | <5 (Ref.)            | 202 (1.7)              | 1.00 (Ref.)                          |         |
| Male          | 5 to 9               | 144 (5.7)              | 2.65 [2.03-3.46]                     |     |                          | 5 to 9               | 221 (6.1)              | 2.44 [1.99-2.99]                     | -8-     |
|               | 10 to 14             | 128 (13)               | 3.92 [2.95-5.21]                     |     |                          | 10 to 14             | 186 (14)               | 3.74 [2.99-4.68]                     |         |
|               | 15 to 29             | 186 (31)               | 5.74 [4.33-7.60]                     |     |                          | 15 to 29             | 242 (31)               | 5.42 [4.31-6.82]                     |         |
|               | 30 to 49             | 102 (53)               | 8.03 [5.80-11.1]                     |     |                          | 30 to 49             | 94 (49)                | 7.43 [5.50-10.0]                     |         |
|               | >49                  | 58 (70)                | 11.9 [8.20-17.4]                     |     | Atrial Fibrillation      | >49                  | 56 (67)                | 13.1 [9.29-18.3]                     | _       |
| Female        | <5 (Ref.)            | 130 (1.9)              | 1.00 (Ref.)                          |     |                          | <5 (Ref.)            | 27 (5.8)               | 1.00 (Ref.)                          |         |
| remaie        | 5 to 9               | 119 (7.6)              | 2.06 [1.59-2.67]                     |     | Yes                      | 5 to 9               | 70 (16)                | 2.42 [1.55-3.78]                     |         |
|               | 10 to 14             | 123 (17)               | 3.31 [2.53-4.33]                     | -   |                          | 10 to 14             | 60 (20)                | 2.43 [1.54-3.85]                     |         |
|               | 15 to 29             | 174 (35)               | 4.60 [3.52-6.02]                     |     |                          | 15 to 29             | 150 (42)               | 4.25 [2.78-6.48]                     |         |
|               | 30 to 49             | 58 (55)                | 8.31 [5.89-11.7]                     |     |                          | 30 to 49             | 93 (68)                | 8.04 [5.12-12.6]                     |         |
|               | >49                  | 33 (67)                | 13.4 [8.89-20.1]                     |     |                          | >49                  | 52 (79)                | 10.6 [6.51-17.4]                     |         |
| eGFR          | <5 (Ref.)            | 209 (1.8)              | 1.00 (Ref.)                          | 1   | No                       | <5 (Ref.)            | 197 (1.7)              | 1.00 (Ref.)                          |         |
| >60mL/min     | 5 to 9               | 209 (1.8)<br>211 (5.6) | 2.30 [1.87-2.81]                     | T - | NU                       | 5 to 9               | 193 (5.3)              | 2.27 [1.84-2.80]                     |         |
| 2001112/11111 | 10 to 14             | 171 (13)               | 3.78 [3.02-4.73]                     |     |                          | 10 to 14             | 193 (3.3)              | 4.09 [3.26-5.12]                     | _       |
|               | 15 to 29             | 163 (27)               | 5.54 [4.36-7.04]                     | -   |                          | 15 to 29             | 210 (28)               | 5.63 [4.44-7.13]                     |         |
|               | 30 to 49             | 45 (49)                | 9.93 [6.99-14.1]                     |     |                          | 30 to 49             | 67 (42)                | 7.10 [5.15-9.79]                     |         |
|               | >49                  | 20 (50)                | 11.4 [7.08-18.4]                     |     | Time Period              | >49                  | 39 (59)                | 12.9 [8.79-18.8]                     |         |
| -60mL/min     | -F (D-6)             | 15 (5 5)               | 100(0-5)                             |     | Jan 1, 2011-Apr 24, 2012 | · [ (D - f )         | 170 (2.1)              | 100(0-6)                             |         |
|               | <5 (Ref.)<br>5 to 9  | 15 (6.6)<br>52 (15)    | 1.00 (Ref.)<br>2.23 [1.26-3.97]      | 1   | Jan 1, 2011-Apr 24, 2012 | <5 (Ref.)<br>5 to 9  | 178 (3.1)<br>134 (17)  | 1.00 (Ref.) 4<br>3.09 [2.44-3.90]    |         |
|               | 10 to 14             | 80 (21)                | 2.76 [1.59-4.81]                     |     |                          | 10 to 14             | 96 (22)                | 3.54 [2.72-4.60]                     |         |
|               | 15 to 29             | 197 (40)               | 4.17 [2.45-7.08]                     |     |                          | 15 to 29             | 182 (45)               | 5.68 [4.47-7.21]                     |         |
|               | 30 to 49             | 115 (56)               | 4.10 [2.41-6.98]                     |     |                          | 30 to 49             | 76 (60)                | 6.95 [5.11-9.47]                     |         |
|               | >49                  | 71 (77)                | 6.29 [3.64-10.9]                     |     |                          | >49                  | 55 (72)                | 12.8 [9.21-17.9]                     | _       |
| art Failure   |                      |                        |                                      |     |                          |                      |                        | 23 - 224                             |         |
| Yes           | <5 (Ref.)            | 10 (8.6)               | 1.00 (Ref.)                          | +   | Apr 25, 2012–Oct 20,2014 | <5 (Ref.)            | 46 (0.7)               | 1.00 (Ref.)                          |         |
|               | 5 to 9               | 26 (18)                | 1.65 [0.79-3.42]                     |     |                          | 5 to 9               | 129 (3.9)              | 1.92 [1.53-2.41]                     |         |
|               | 10 to 14             | 41 (28)                | 2.39 [1.19-4.78]                     |     |                          | 10 to 14             | 155 (12)               | 3.84 [3.06-4.83]                     |         |
|               | 15 to 29             | 114 (47)               | 3.24 [1.69-6.24]                     |     |                          | 15 to 29             | 178 (26)               | 5.20 [4.09-6.60]                     |         |
|               | 30 to 49<br>>49      | 80 (65)<br>38 (72)     | 5.64 [2.89-11.0]<br>6.48 [3.17-13.2] |     |                          | 30 to 49<br>>49      | 84 (49)<br>36 (64)     | 10.6 [7.87-14.4]<br>12.9 [8.55-19.5] |         |
|               |                      |                        |                                      |     |                          | 10000                |                        | -                                    | - I I I |
| No            | <5 (Ref.)            | 214 (1.8)              | 1.00 (Ref.)                          | t _ |                          |                      |                        | 1                                    | 2 5 10  |
|               | 5 to 9               | 237 (6.0)              | 2.37 [1.94-2.88]                     |     |                          |                      |                        |                                      |         |
|               | 10 to 14<br>15 to 29 | 210 (14)<br>246 (29)   | 3.68 [2.97-4.57]                     | -   |                          |                      |                        |                                      |         |
|               |                      | 246 (29)               | 5.41 [4.32-6.77]                     |     |                          |                      |                        |                                      |         |
|               |                      |                        |                                      |     |                          |                      |                        |                                      |         |
|               | 30 to 49<br>>49      | 80 (46)<br>53 (67)     | 7.68 [5.69-10.4]<br>14.9 [10.6-20.9] |     |                          |                      |                        |                                      |         |


1 2 5 10 20

### Detectable High-Sensitivity Cardiac Troponin within the Population Reference Interval Conveys High 5-Year Cardiovascular Risk: An Observational Study

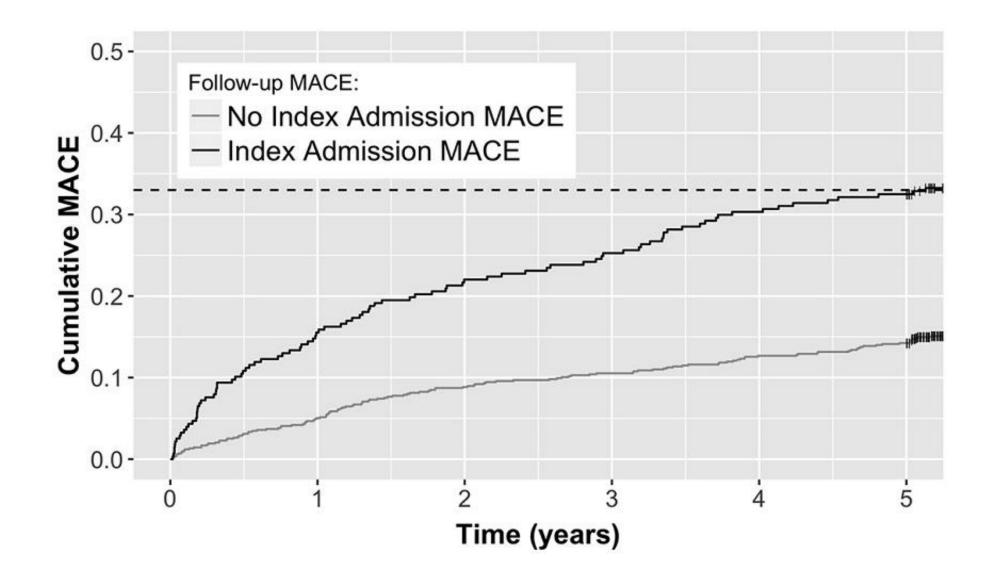

 Martin P. Than,<sup>1</sup> Sally J. Aldous,<sup>1</sup> Richard W. Troughton,<sup>1,2</sup> Christopher J. Pemberton,<sup>2</sup> A. Mark Richards,<sup>2,3</sup> Christopher M.A. Frampton,<sup>2</sup> Christopher M. Florkowski,<sup>1</sup> Peter M. George,<sup>1</sup> Samantha Bailey,<sup>1</sup>
Joanna M. Young,<sup>1</sup> Louise Cullen,<sup>4,5,6</sup> Jaimi H. Greenslade,<sup>4,6</sup> William A. Parsonage,<sup>4</sup> Brendan M. Everett,<sup>7</sup> W. Frank Peacock,<sup>8</sup> Allan S. Jaffe,<sup>9</sup> and John W. Pickering<sup>1,2\*</sup> Observational Study of Patients Recruited in the Emergency Department With Possible ACS: Flow Chart of Data Available for Analysis




Than M, et al. Clin Chem. 2018;64:1044-1053.

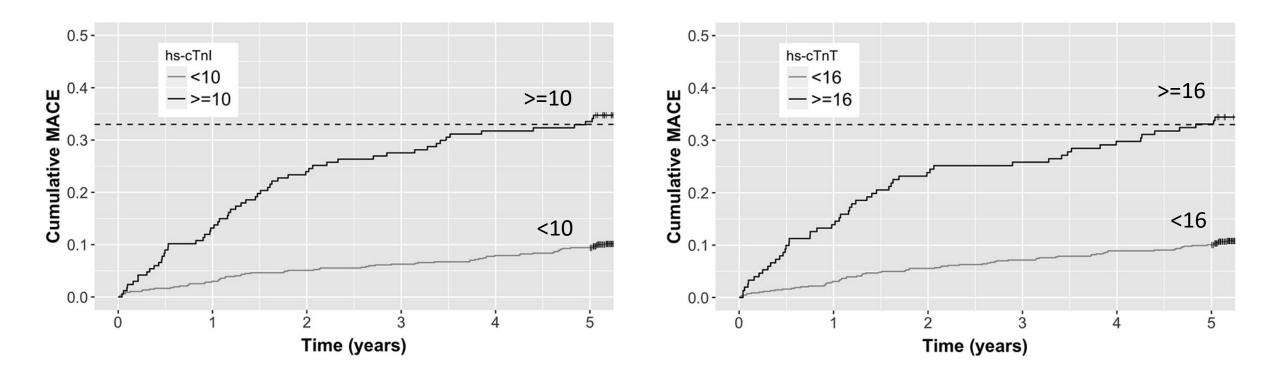


**Kaplan-Meier plots of cumulative MACE** 




**Kaplan-Meier plots of cumulative MACE** 




**Kaplan-Meier plots of cumulative death** 

Cumulative MACE for Patients With and Without Index Admission MACE



Than M, et al. Clin Chem. 2018;64:1044-1053.

Cumulative MACE for Patients Split According to hs-cTnI (B) and hs-cTnT (C) Thresholds: Inpatients Without Index Admission MACE



The hs-cTn thresholds in (B) and (C) are chosen to give at least an equivalent 5-year cumulative MACE as for patients with index admission MACE of 0.33 (33%).

Than M, et al. Clin Chem. 2018;64:1044-1053.

The use of terms such as "troponitis", "troponin leak" and "troponinemia" in clinical practice is OK

- 1. Agree
- 2. Disagree

# Messages

- Detectable troponin at concentrations < 99th percentile increase CV risk
- Hs-cTnT additionally has prediction for mortality
- We need to develop strategies/guidance for clinicians