The Role of Alkalinisation Therapy in Tricyclic Antidepressant Toxicity

Mr. Kieran Pai

A/Prof. Betty Chan

Dr. Angela Chiew

Prof. Nicholas Buckley

Dr. Therese Becker

Dr. Katherine Isoardi

Dr. Rose Cairns

Mr. Jared Brown

Epidemiology

Tricyclic Antidepressant (TCA) poisonings

- TCAs have a relatively high toxicity profile
- No longer first-line treatment for depression
- Remain indicated in resistant depression
- During 2017 in the USA alone:
 - ~10,000 recorded cases
 - 73 reported fatalities
 - 2.2% of all poisoning-related mortalities

Pathophysiology

Treatment

Gaps in the Literature

- Few studies support the need for therapeutic hyperventilation
- No study has quantified the effects of NaHCO₃ and hyperventilation on the biochemical profile
- Little evidence demonstrating therapeutic effects of NaHCO₃ and/or hyperventilation in humans
- Lack of guidelines for dosing NaHCO₃ and regulating hyperventilation

Objectives

To quantify the effects of NaHCO₃ and hyperventilation on:

- The biochemical profile (serum pH, [Na+])
- ECG findings (QRS interval)

To test how accurately our mathematical model can predict increases in serum pH

To use our model to develop a nomogram for the dosage of NaHCO₃ and regulation of hyperventilation

Methods

- 7 year retrospective review
- Patients ≥15yo with ≥10mg/kg TCA overdose
- Nation-wide
 - South Eastern Area Toxicology Service (SEATS)
 - Princess Alexandra Toxicology Service (PATS)
 - NSW Poisons Information Centre (PIC)
- Recorded serial blood gases and ECG
- Widened QRS is >110msec. Therapeutic narrowing of QRS if decrease by
 - >30msec or to <100msec

Overview of Results

Serum Alkalinisation

NaHCO₃ and hyperventilation worked best

...but further guidelines are required

Loading Serum Sodium with NaHCO₃

100-400mmol of NaHCO₃ seems appropriate for sodium loading

...but doses above 400mmol may risk hypernatremia

NaHCO₃ and hyperventilation and QRS narrowing

- QRS narrowing occurred <u>3x sooner</u> in the <u>dual therapy</u> group (n=51) compared to the <u>single/supportive therapy</u> group (n=33)
 - Cox regression: OR: 3.2, 95%CI: 1.2-8.2, p=0.02

- Receiving Dual Therapy
- Receiving Single/Supportive Therapy only

Predicting increases in pH following treatment

Predicting Serum pH:

$$[serum\ HCO_3^-]_{after\ Tx} = [serum\ HCO_3^-]_{before\ Tx} + \frac{NaHCO_3}{40} + 0.2 \times \Delta PCO_2$$

Using the Henderson-Hasselbalch equation:

$$pH_{after Tx} = 6.1 + \log \left(\frac{[serum HCO_3^-]_{after Tx}}{0.03 \times PCO_{2 after Tx}} \right)$$

Accuracy of Equation

Intraclass correlation coefficient (ICC) - a measure of accuracy

0 = no accuracy, 1 = perfect accuracy

Serum pH:

ICC = 0.84 (95%CI: 0.77-0.90)

- Predicted pH increase
- Line of identity

A nomogram for dosing NaHCO₃

Patient example:

- PCO₂ 50mmHg
- Serum pH 7.25
- Recommended NaHCO₃ dose:
 200-250mmol

The nomogram:

- Aims to increase pH to 7.50
- Assumes hyperventilation to PCO₂ 30mmHg
- Caution with NaHCO₃ ≥500mmol

Conclusion

- Alkalinisation therapy is best achieved through both NaHCO₃ and hyperventilation
- These therapies can help narrow QRS
- We recommend hyperventilating patients to PCO₂ 30mmHg and dosing NaHCO₃ according to our nomogram
- Caution should be applied with doses of NaHCO₃ beyond 400mmol
- Therapy should be ceased if serum pH >7.55 or if serum [Na+] increases by
 >10mmol/L

Questions?

Limitations and future directions

Limitations

Retrospective study:

- Incomplete or erroneous documentation
- Confounding treatments
- Non-uniform methods of measurement

Future directions

Prospective study (SODA 2):

- Uniform approach to treatment and observation
- Can assess benefits of treatment guidelines

Limited findings:

 Could not demonstrate therapeutic effects of treatments apart from QRS narrowing

Larger study:

- Investigate how other ECG markers (e.g. avR or R/S ratio) or clinical signs (e.g. hypotension) are affected by these treatments
- More standardised measurements (before AND after treatment)

Overview of Results

	NaHCO ₃ group (IQR) n=86	No NaHCO ₃ group (IQR) n=74	P-value
Dose of NaHCO ₃	200 (100-300)	0	
Age	44 (28-57)	43 (27-51)	ns
Female	51 (59%)	52 (70%)	ns
Dose (g)	1.5 (1.3-2.5)	1.3 (1.0-1.8)	0.0010
Maximum HR (bpm)	124 (102-133)	105 (96-120)	0.0006
Minimum MAP (mmHg)	72 (65-84)	77 (70-89)	0.0159
Minimum GCS	3 (3-8)	10 (3-13)	<0.0001
Intubated	74 (86%)	32 (43%)	<0.0001
Maximum QRS (msec)	122 (108-138)	105 (94-115)	<0.0001
Length of stay	2.0 (1.3-2.7)	1.0 (0.6-1.8)	<0.0001
Seizure	11 (13%)	3 (4%)	ns
Death	1 (1%)	0	ns

Rules of thumb

Every 10mmHg decrease in PCO₂ increases serum pH by approximately 0.05 Every 100mmol of NaHCO₃ increases pH by approximately 0.05

ICC: 0.80 (95%CI: 0.71-0.87)

- Clinically simple to remember and implement
- Does not require nomogram's conditions

- Less accurate than Henderson-Hasselbalch equation
- pH change varies with patient biochemistry (HCO₃⁻ and PCO₂)

Mathematics behind nomogram

Assume final pH = 7.50, final PCO_2 =30mmHg. Sub into H-H equation	$7.5 = 6.1 + \log\left(\frac{[serum\ HCO_3^-]_{after\ Tx}}{0.03\times30}\right) \rightarrow [Serum\ HCO_3^-]_{after\ Tx} = 22.6mmol/L$
From our equations:	$[serum\ HCO_3^-]_{after\ Tx} = [serum\ HCO_3^-]_{before\ Tx} + \frac{NaHCO_3}{40} + 0.2 \times \Delta PCO2$
Rearranging Henderson-Hasselbalch equation:	$[serum\ HCO_3^-]_{before\ Tx} = 10^{pH_{before\ Tx}-6.1} \times 0.03 \times PCO_{2_{before\ Tx}}$
Y-axis is PCO ₂ on assessment and x-axis is recommended dose of NaHCO _{3.} Substituting previous:	$22.6 = 10^{pH_{before}Tx^{-6.1}} \times 0.03 \times y + \frac{x}{40} + 0.2(30 - y)$
Rearrange for y:	$y = \frac{x - 664}{8 - 1.2 \times 10^{pH_{before Tx} - 6.1}}$
Substitute pH (e.g. 7.25)	$y = \frac{x - 664}{-9.0}$

Bland-Altman Analysis

